These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 15524608)

  • 1. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise.
    Do Y; Lai YC
    Phys Rev Lett; 2003 Nov; 91(22):224101. PubMed ID: 14683241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling laws for noise-induced super-persistent chaotic transients.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046208. PubMed ID: 15903771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of noise-induced strange nonchaotic attractors.
    Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick.
    Benczik IJ; Toroczkai Z; Tél T
    Phys Rev Lett; 2002 Oct; 89(16):164501. PubMed ID: 12398726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasipotential approach to critical scaling in noise-induced chaos.
    Tél T; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and fragmentation dynamics of inertial particles in chaotic flows.
    Zahnow JC; Vilela RD; Feudel U; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055301. PubMed ID: 18643122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.
    Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K
    Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of noise on the neutral direction of chaotic attractor.
    Lai YC; Liu Z
    Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-size effects on active chaotic advection.
    Nishikawa T; Toroczkai Z; Grebogi C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory effects are relevant for chaotic advection of inertial particles.
    Daitche A; Tél T
    Phys Rev Lett; 2011 Dec; 107(24):244501. PubMed ID: 22243003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basin topology in dissipative chaotic scattering.
    Seoane JM; Aguirre J; Sanjuán MA; Lai YC
    Chaos; 2006 Jun; 16(2):023101. PubMed ID: 16822004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic motion of light particles in an unsteady three-dimensional vortex: experiments and simulation.
    Vanyó J; Vincze M; Jánosi IM; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013002. PubMed ID: 25122364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of chaotic attractors for flows in the absence of any singular point.
    Letellier C; Malasoma JM
    Chaos; 2016 Jun; 26(6):063115. PubMed ID: 27368780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal snapshot components in chaos induced by strong noise.
    Bódai T; Károlyi G; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advection of finite-size particles in open flows.
    Benczik IJ; Toroczkai Z; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036303. PubMed ID: 12689161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical or biological activity in open chaotic flows.
    Károlyi G; Péntek A; Toroczkai Z; Tél T; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5468-81. PubMed ID: 11969526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of chaos versus periodicity: how certain is it that an attractor is chaotic?
    Joglekar M; Ott E; Yorke JA
    Phys Rev Lett; 2014 Aug; 113(8):084101. PubMed ID: 25192099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation.
    Li X; Shen Y; Sun JQ; Yang S
    Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.