These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 15524608)
21. Effect of resonant-frequency mismatch on attractors. Wang X; Lai YC; Lai CH Chaos; 2006 Jun; 16(2):023127. PubMed ID: 16822030 [TBL] [Abstract][Full Text] [Related]
22. Clustering, chaos, and crisis in a bailout embedding map. Thyagu NN; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046218. PubMed ID: 17995093 [TBL] [Abstract][Full Text] [Related]
23. Reactive particles in random flows. Károlyi G; Tél T; de Moura AP; Grebogi C Phys Rev Lett; 2004 Apr; 92(17):174101. PubMed ID: 15169152 [TBL] [Abstract][Full Text] [Related]
24. Finite-size effects on open chaotic advection. Vilela RD; de Moura AP; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026302. PubMed ID: 16605449 [TBL] [Abstract][Full Text] [Related]
25. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
27. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors. Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634 [TBL] [Abstract][Full Text] [Related]
28. Influence of the history force on inertial particle advection: gravitational effects and horizontal diffusion. Guseva K; Feudel U; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042909. PubMed ID: 24229251 [TBL] [Abstract][Full Text] [Related]
29. Transport and diffusion in the embedding map. Nirmal Thyagu N; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066203. PubMed ID: 19658579 [TBL] [Abstract][Full Text] [Related]
30. Clustering of inertial particles in compressible chaotic flows. Pérez-Muñuzuri V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052906. PubMed ID: 26066228 [TBL] [Abstract][Full Text] [Related]
31. Chaotic itinerancy based on attractors of one-dimensional maps. Sauer T Chaos; 2003 Sep; 13(3):947-52. PubMed ID: 12946187 [TBL] [Abstract][Full Text] [Related]
32. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow. Narayanan S; Gunaratne GH; Hussain F Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969 [TBL] [Abstract][Full Text] [Related]
33. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori. Zahnow JC; Feudel U Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111 [TBL] [Abstract][Full Text] [Related]
34. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
35. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies. Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348 [TBL] [Abstract][Full Text] [Related]