These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Noise- and inertia-induced inhomogeneity in the distribution of small particles in fluid flows. Cartwright JH; Magnasco MO; Piro O Chaos; 2002 Jun; 12(2):489-495. PubMed ID: 12779579 [TBL] [Abstract][Full Text] [Related]
25. Chemical or biological activity in open chaotic flows. Károlyi G; Péntek A; Toroczkai Z; Tél T; Grebogi C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5468-81. PubMed ID: 11969526 [TBL] [Abstract][Full Text] [Related]
26. Wannier basis method for the Kolmogorov-Arnold-Moser effect in quantum mechanics. Yin C; Chen Y; Wu B Phys Rev E; 2019 Nov; 100(5-1):052206. PubMed ID: 31869972 [TBL] [Abstract][Full Text] [Related]
27. Power law polydispersity and fractal structure of hyperbranched polymers. Buzza DM Eur Phys J E Soft Matter; 2004 Jan; 13(1):79-86. PubMed ID: 15024618 [TBL] [Abstract][Full Text] [Related]
28. New cases of quasiperiodic motions in reversible systems. Sevryuk MB Chaos; 1993 Apr; 3(2):211-214. PubMed ID: 12780029 [TBL] [Abstract][Full Text] [Related]
29. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors. Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634 [TBL] [Abstract][Full Text] [Related]
30. Aggregation and fragmentation dynamics of inertial particles in chaotic flows. Zahnow JC; Vilela RD; Feudel U; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055301. PubMed ID: 18643122 [TBL] [Abstract][Full Text] [Related]
31. Calculation of cantori for Hamiltonian flows. Hudson SR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056203. PubMed ID: 17279980 [TBL] [Abstract][Full Text] [Related]
32. Numerical computations of molecular reactions in associated systems caused by the formation of fractal structures. Tarasov DN; Tiger RP J Comput Chem; 2008 Jan; 29(2):220-4. PubMed ID: 17557283 [TBL] [Abstract][Full Text] [Related]
33. Dynamics of impurities in a three-dimensional volume-preserving map. Das S; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359 [TBL] [Abstract][Full Text] [Related]
34. Fractal generation in a two-dimensional active-nematic fluid. Mitchell KA; Tan AJ; Arteaga J; Hirst LS Chaos; 2021 Jul; 31(7):073125. PubMed ID: 34340333 [TBL] [Abstract][Full Text] [Related]
35. Phototactic clustering of swimming microorganisms in a turbulent velocity field. Torney C; Neufeld Z Phys Rev Lett; 2008 Aug; 101(7):078105. PubMed ID: 18764584 [TBL] [Abstract][Full Text] [Related]
36. A Taylor vortex analogy in granular flows. Conway SL; Shinbrot T; Glasser BJ Nature; 2004 Sep; 431(7007):433-7. PubMed ID: 15386007 [TBL] [Abstract][Full Text] [Related]
37. Cluster-cluster aggregation of Ising dipolar particles under thermal noise. Suzuki M; Kun F; Ito N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021402. PubMed ID: 19792119 [TBL] [Abstract][Full Text] [Related]
38. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability. Do Y; Lai YC; Liu Z; Kostelich EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122 [TBL] [Abstract][Full Text] [Related]
39. Escape dynamics through a continuously growing leak. Kovács T; Vanyó J Phys Rev E; 2017 Jun; 95(6-1):062218. PubMed ID: 28709353 [TBL] [Abstract][Full Text] [Related]
40. Partitioning the phase space in a natural way for scattering systems. Emmanouilidou A; Jung C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016219. PubMed ID: 16486270 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]