These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15524631)

  • 1. Electro-osmotic streaming on application of traveling-wave electric fields.
    Cahill BP; Heyderman LJ; Gobrecht J; Stemmer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036305. PubMed ID: 15524631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation.
    Green NG; Ramos A; González A; Morgan H; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026305. PubMed ID: 12241283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes.
    Ramos A; González A; Castellanos A; Green NG; Morgan H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056302. PubMed ID: 12786267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-orientation and electrorotation of metal nanowires.
    Arcenegui JJ; García-Sánchez P; Morgan H; Ramos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063018. PubMed ID: 24483568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes.
    Brown AB; Smith CG; Rennie AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016305. PubMed ID: 11304351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays.
    Yeh HC; Yang RJ; Luo WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056326. PubMed ID: 21728666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion fluxes and electro-osmotic fluid flow in electrolytes around a metallic nanowire tip under large applied ac voltage.
    Poetschke M; Bobeth M; Cuniberti G
    Langmuir; 2013 Sep; 29(36):11525-34. PubMed ID: 23927385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis.
    González A; Ramos A; García-Sánchez P; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016320. PubMed ID: 20365473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ac Electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications.
    Zhao C; Yang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066304. PubMed ID: 21797474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements.
    Green NG; Ramos A; Gonzalez A; Morgan H; Castellanos A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4011-8. PubMed ID: 11088192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis.
    Gonzalez A; Ramos A; Green NG; Castellanos A; Morgan H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4019-28. PubMed ID: 11088193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.
    Sugioka H
    Phys Rev E; 2016 Aug; 94(2-1):022609. PubMed ID: 27627362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced-charge electrokinetics: fundamental challenges and opportunities.
    Squires TM
    Lab Chip; 2009 Sep; 9(17):2477-83. PubMed ID: 19680573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-osmotic flow through a two-dimensional screen-pump filter.
    Liu YH; Kuo CY; Chang CC; Wang CY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036301. PubMed ID: 22060486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface.
    Mayur M; Amiroudine S; Lasseux D; Chakraborty S
    Electrophoresis; 2014 Mar; 35(5):670-80. PubMed ID: 24123086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels.
    Yoshida H; Mizuno H; Kinjo T; Washizu H; Barrat JL
    J Chem Phys; 2014 Jun; 140(21):214701. PubMed ID: 24908029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic particle-electrode interactions at high frequencies.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012310. PubMed ID: 23410334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic flow and electric current in a fibrous porous medium.
    Wu YY; Keh HJ
    J Phys Chem B; 2012 Mar; 116(11):3578-86. PubMed ID: 22369485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields.
    Liu W; Ren Y; Tao Y; Chen X; Wu Q
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.