These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15524634)

  • 1. Molecular to fluid dynamics: the consequences of stochastic molecular motion.
    Heinz S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036308. PubMed ID: 15524634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics.
    Pooley CM; Yeomans JM
    J Phys Chem B; 2005 Apr; 109(14):6505-13. PubMed ID: 16851730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.
    Hoover WG; Hoover CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046302. PubMed ID: 20481822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and entropy production due to chaos or turbulence.
    Mori H; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026302. PubMed ID: 11308572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows.
    Minier JP; Profeta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053020. PubMed ID: 26651792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory.
    Chen X; Rao H; Spiegel EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046308. PubMed ID: 11690147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic results for backwards two-particle dispersion in a turbulent flow.
    Benveniste D; Drivas TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041003. PubMed ID: 24827179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational principles for stochastic fluid dynamics.
    Holm DD
    Proc Math Phys Eng Sci; 2015 Apr; 471(2176):20140963. PubMed ID: 27547083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Fluid Dynamics: Continuum and Molecular Approaches.
    Bird RB; Giacomin AJ
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():479-507. PubMed ID: 27276553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows.
    Daivis PJ; Todd BD
    J Chem Phys; 2006 May; 124(19):194103. PubMed ID: 16729799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems.
    Wu W; Wang J
    J Chem Phys; 2014 Sep; 141(10):105104. PubMed ID: 25217956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails.
    Ihle T; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066706. PubMed ID: 16241379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-scale equations for compressible fluid flow.
    Margolin LG
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2861-71. PubMed ID: 19531508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
    Bell JB; Garcia AL; Williams SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016708. PubMed ID: 17677595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.
    Jurcisinová E; Jurcisin M; Remecký R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046302. PubMed ID: 19905431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.