These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 15524746)

  • 1. Projective quantum monte carlo method for the anderson impurity model and its application to dynamical mean field theory.
    Feldbacher M; Held K; Assaad FF
    Phys Rev Lett; 2004 Sep; 93(13):136405. PubMed ID: 15524746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-continuous-time impurity solver for the dynamical mean-field theory with linear scaling in the inverse temperature.
    Rost D; Assaad F; Blümer N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053305. PubMed ID: 23767655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study.
    Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI
    Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Projective quantum Monte Carlo method for the Anderson impurity model and its application to dynamical mean field theory".
    Katsnelson MI
    Phys Rev Lett; 2006 Apr; 96(13):139701; author reply 139702. PubMed ID: 16712050
    [No Abstract]   [Full Text] [Related]  

  • 5. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-insulator transitions in the periodic Anderson model.
    Sordi G; Amaricci A; Rozenberg MJ
    Phys Rev Lett; 2007 Nov; 99(19):196403. PubMed ID: 18233094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Monte Carlo study of an interaction-driven band-insulator-to-metal transition.
    Paris N; Bouadim K; Hebert F; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2007 Jan; 98(4):046403. PubMed ID: 17358793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum phase transition in the two-band hubbard model.
    Costi TA; Liebsch A
    Phys Rev Lett; 2007 Dec; 99(23):236404. PubMed ID: 18233389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doped Mott insulator as the origin of heavy-fermion behavior in LiV2O4.
    Arita R; Held K; Lukoyanov AV; Anisimov VI
    Phys Rev Lett; 2007 Apr; 98(16):166402. PubMed ID: 17501438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical mean field theory with the density matrix renormalization group.
    García DJ; Hallberg K; Rozenberg MJ
    Phys Rev Lett; 2004 Dec; 93(24):246403. PubMed ID: 15697837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite doping signatures of the Mott transition in the two-dimensional Hubbard model.
    Sordi G; Haule K; Tremblay AM
    Phys Rev Lett; 2010 Jun; 104(22):226402. PubMed ID: 20867185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems.
    Li Z; Tong N; Zheng X; Hou D; Wei J; Hu J; Yan Y
    Phys Rev Lett; 2012 Dec; 109(26):266403. PubMed ID: 23368590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced multi-orbital impurity solver for dynamical mean field theory based on the equation of motion approach.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2012 Feb; 24(5):055603. PubMed ID: 22248628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of the one-crossing approximation in describing the Mott transition.
    Vildosola V; Pourovskii LV; Manuel LO; Roura-Bas P
    J Phys Condens Matter; 2015 Dec; 27(48):485602. PubMed ID: 26565588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical behavior at the mott-anderson transition: a typical-medium theory perspective.
    Aguiar MC; Dobrosavljević V; Abrahams E; Kotliar G
    Phys Rev Lett; 2009 Apr; 102(15):156402. PubMed ID: 19518658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models.
    Hewson AC; Bauer J
    J Phys Condens Matter; 2010 Mar; 22(11):115602. PubMed ID: 21389469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum condensation in electron-hole systems: excitonic BEC-BCS crossover and biexciton crystallization.
    Ogawa T; Tomio Y; Asano K
    J Phys Condens Matter; 2007 Jul; 19(29):295205. PubMed ID: 21483057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Hubbard-I approximation impurity solver for quantum impurity models.
    Qiu H; Zhuang J; Huang L; Zhao J; Du L
    J Phys Condens Matter; 2018 Dec; 31(2):. PubMed ID: 30524047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-insulator transitions in the half-filled ionic Hubbard model.
    Hoang AT
    J Phys Condens Matter; 2010 Mar; 22(9):095602. PubMed ID: 21389421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.