These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 15524799)

  • 1. Model for heat conduction in nanofluids.
    Kumar DH; Patel HE; Kumar VR; Sundararajan T; Pradeep T; Das SK
    Phys Rev Lett; 2004 Oct; 93(14):144301. PubMed ID: 15524799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.
    Timofeeva EV; Gavrilov AN; McCloskey JM; Tolmachev YV; Sprunt S; Lopatina LM; Selinger JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061203. PubMed ID: 18233838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for the effective thermal conductivity of carbon nanotube composites.
    Xue QZ
    Nanotechnology; 2006 Mar; 17(6):1655-60. PubMed ID: 26558574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions.
    Koo J; Kang Y; Kleinstreuer C
    Nanotechnology; 2008 Sep; 19(37):375705. PubMed ID: 21832559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency dependent enhancement of heat transport in a nanofluid with ZnO nanoparticles.
    Neogy RK; Raychaudhuri AK
    Nanotechnology; 2009 Jul; 20(30):305706. PubMed ID: 19584421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effective thermal conductivity model of nanofluids with a cubical arrangement of spherical particles.
    Yu W; Choi SU
    J Nanosci Nanotechnol; 2005 Apr; 5(4):580-6. PubMed ID: 16004122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward nanofluids of ultra-high thermal conductivity.
    Wang L; Fan J
    Nanoscale Res Lett; 2011 Feb; 6(1):153. PubMed ID: 21711677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-based stable nanofluids containing gold nanoparticles.
    Wang B; Wang X; Lou W; Hao J
    J Colloid Interface Sci; 2011 Oct; 362(1):5-14. PubMed ID: 21723564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convection in nanofluids with a particle-concentration-dependent thermal conductivity.
    Glässl M; Hilt M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046315. PubMed ID: 21599303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.
    Bhanushali S; Jason NN; Ghosh P; Ganesh A; Simon GP; Cheng W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18925-18935. PubMed ID: 28471162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration and size dependence of nano-silver dispersed water based nanofluids.
    Paul G; Sarkar S; Pal T; Das PK; Manna I
    J Colloid Interface Sci; 2012 Apr; 371(1):20-7. PubMed ID: 22284450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids.
    Sui J; Zheng L; Zhang X; Chen Y; Cheng Z
    Sci Rep; 2016 Jan; 6():19560. PubMed ID: 26777389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model.
    Ye X; Kandlikar SG; Li C
    Eur Phys J E Soft Matter; 2019 Dec; 42(12):159. PubMed ID: 31863297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles.
    Warrier P; Teja A
    Nanoscale Res Lett; 2011 Mar; 6(1):247. PubMed ID: 21711761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.