These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15524940)

  • 1. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes.
    Lefebvre J; Finnie P
    Phys Rev Lett; 2007 Apr; 98(16):167406. PubMed ID: 17501463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-hole interaction in carbon nanotubes: novel screening and exciton excitation spectra.
    Deslippe J; Dipoppa M; Prendergast D; Moutinho MV; Capaz RB; Louie SG
    Nano Lett; 2009 Apr; 9(4):1330-4. PubMed ID: 19271768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2007 Apr; 98(16):166805. PubMed ID: 17501449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes.
    Dukovic G; Wang F; Song D; Sfeir MY; Heinz TF; Brus LE
    Nano Lett; 2005 Nov; 5(11):2314-8. PubMed ID: 16277475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atlas of carbon nanotube optical transitions.
    Liu K; Deslippe J; Xiao F; Capaz RB; Hong X; Aloni S; Zettl A; Wang W; Bai X; Louie SG; Wang E; Wang F
    Nat Nanotechnol; 2012 Apr; 7(5):325-9. PubMed ID: 22504706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.