These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15525059)

  • 1. Efficient simulations of gas-grain chemistry in interstellar clouds.
    Lipshtat A; Biham O
    Phys Rev Lett; 2004 Oct; 93(17):170601. PubMed ID: 15525059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient stochastic simulations of complex reaction networks on surfaces.
    Barzel B; Biham O
    J Chem Phys; 2007 Oct; 127(14):144703. PubMed ID: 17935419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact results for hydrogen recombination on dust grain surfaces.
    Biham O; Lipshtat A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056103. PubMed ID: 12513552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three milieux for interstellar chemistry: gas, dust, and ice.
    Herbst E
    Phys Chem Chem Phys; 2014 Feb; 16(8):3344-59. PubMed ID: 24220255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.
    Jones AP
    R Soc Open Sci; 2016 Dec; 3(12):160224. PubMed ID: 28083090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of molecular hydrogen formation on low-temperature surfaces in temperature programmed desorption experiments.
    Vidali G; Pirronello V; Li L; Roser J; Manicó G; Congiu E; Mehl H; Lederhendler A; Perets HB; Brucato JR; Biham O
    J Phys Chem A; 2007 Dec; 111(49):12611-9. PubMed ID: 17988107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry.
    Caruana DJ; Holt KB
    Phys Chem Chem Phys; 2010 Apr; 12(13):3072-9. PubMed ID: 20237693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemistry of a 1 : 1 hydrogen-bonded CH3CN : HCOOH complex under astrochemically-relevant conditions.
    Zins EL; Krim L
    Phys Chem Chem Phys; 2014 Feb; 16(8):3388-98. PubMed ID: 24270673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates.
    Congiu E; Chaabouni H; Laffon C; Parent P; Baouche S; Dulieu F
    J Chem Phys; 2012 Aug; 137(5):054713. PubMed ID: 22894377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distributions and interstellar reaction processes.
    Neill JL; Steber AL; Muckle MT; Zaleski DP; Lattanzi V; Spezzano S; McCarthy MC; Remijan AJ; Friedel DN; Widicus Weaver SL; Pate BH
    J Phys Chem A; 2011 Jun; 115(24):6472-80. PubMed ID: 21591798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction kinetics in confined geometries: lonely adatoms in space.
    Krug J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065102. PubMed ID: 16241287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dust evolution, a global view I. Nanoparticles, nascence, nitrogen and natural selection … joining the dots.
    Jones AP
    R Soc Open Sci; 2016 Dec; 3(12):160221. PubMed ID: 28083088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer.
    Altobelli N; Postberg F; Fiege K; Trieloff M; Kimura H; Sterken VJ; Hsu HW; Hillier J; Khawaja N; Moragas-Klostermeyer G; Blum J; Burton M; Srama R; Kempf S; Gruen E
    Science; 2016 Apr; 352(6283):312-8. PubMed ID: 27081064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meteorite nanoparticles as models for interstellar grains: synthesis and preliminary characterisation.
    Mautner MN; Abdelsayed V; El-Shall MS; Thrower JD; Green SD; Collings MP; McCoustra MR
    Faraday Discuss; 2006; 133():103-12; discussion 191-230, 449-52. PubMed ID: 17191444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation of PAH molecules through interaction with hydrogenated carbonaceous grains.
    Thrower JD; Friis EE; Skov AL; Jørgensen B; Hornekær L
    Phys Chem Chem Phys; 2014 Feb; 16(8):3381-7. PubMed ID: 24270708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the multiplane method for efficient simulations of reaction networks.
    Barzel B; Biham O; Kupferman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026703. PubMed ID: 17930170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory surface astrochemistry experiments.
    Frankland VL; Rosu-Finsen A; Lasne J; Collings MP; McCoustra MR
    Rev Sci Instrum; 2015 May; 86(5):055103. PubMed ID: 26026554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensional reduction of the master equation for stochastic chemical networks: The reduced-multiplane method.
    Barzel B; Biham O; Kupferman R; Lipshtat A; Zait A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021117. PubMed ID: 20866785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.