These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15525082)

  • 21. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local Lyapunov exponents for spatiotemporal chaos.
    Pikovsky AS
    Chaos; 1993 Apr; 3(2):225-232. PubMed ID: 12780031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor.
    Kuptsov PV; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016205. PubMed ID: 19658790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinguishing chaos from noise by scale-dependent Lyapunov exponent.
    Gao JB; Hu J; Tung WW; Cao YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos.
    Chlouverakis KE; Sprott JC
    Chaos; 2007 Jun; 17(2):023110. PubMed ID: 17614664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space-time renormalization at the onset of spatio-temporal chaos in coupled maps.
    Alstrom P; Stassinopoulos D
    Chaos; 1992 Jul; 2(3):301-306. PubMed ID: 12779978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems.
    Petrovskii S; Li BL; Malchow H
    Bull Math Biol; 2003 May; 65(3):425-46. PubMed ID: 12749533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometry of reaction interfaces in chaotic flows.
    Giona M; Cerbelli S; Adrover A
    Phys Rev Lett; 2002 Jan; 88(2):024501. PubMed ID: 11801019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaling of lyapunov exponents of coupled chaotic systems.
    Zillmer R; Ahlers V; Pikovsky A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):332-41. PubMed ID: 11046270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction.
    Kiss IZ; Merkin JH; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026216. PubMed ID: 15447574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planar mixed flow and chaos: Lyapunov exponents and the conjugate-pairing rule.
    Bernardi S; Frascoli F; Searles DJ; Todd BD
    J Chem Phys; 2011 Mar; 134(11):114112. PubMed ID: 21428612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient topological chaos embedded in the blinking vortex system.
    Kin E; Sakajo T
    Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Front propagation in a chaotic flow field.
    Mehrvarzi CO; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012905. PubMed ID: 25122358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chaotic mixing induced by a magnetic chain in a rotating magnetic field.
    Kang TG; Hulsen MA; Anderson PD; den Toonder JM; Meijer HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066303. PubMed ID: 18233913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boundary effects on chaotic advection-diffusion chemical reactions.
    Chertkov M; Lebedev V
    Phys Rev Lett; 2003 Apr; 90(13):134501. PubMed ID: 12689293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental studies of pattern formation in a reaction-advection-diffusion system.
    Nugent CR; Quarles WM; Solomon TH
    Phys Rev Lett; 2004 Nov; 93(21):218301. PubMed ID: 15601066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lyapunov exponents for small aspect ratio Rayleigh-BĂ©nard convection.
    Scheel JD; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretching fields and mixing near the transition to nonperiodic two-dimensional flow.
    Twardos MJ; Arratia PE; Rivera MK; Voth GA; Gollub JP; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056315. PubMed ID: 18643169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence.
    Lapeyre G
    Chaos; 2002 Sep; 12(3):688-698. PubMed ID: 12779597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Riemannian geometric approach to chaos in SU(2) Yang-Mills theory.
    Kawabe T; Koyanagi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036222. PubMed ID: 18517500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.