These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 15525082)
21. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
22. Local Lyapunov exponents for spatiotemporal chaos. Pikovsky AS Chaos; 1993 Apr; 3(2):225-232. PubMed ID: 12780031 [TBL] [Abstract][Full Text] [Related]
23. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor. Kuptsov PV; Kuznetsov SP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016205. PubMed ID: 19658790 [TBL] [Abstract][Full Text] [Related]
24. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Gao JB; Hu J; Tung WW; Cao YH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136 [TBL] [Abstract][Full Text] [Related]
26. Space-time renormalization at the onset of spatio-temporal chaos in coupled maps. Alstrom P; Stassinopoulos D Chaos; 1992 Jul; 2(3):301-306. PubMed ID: 12779978 [TBL] [Abstract][Full Text] [Related]
27. Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Petrovskii S; Li BL; Malchow H Bull Math Biol; 2003 May; 65(3):425-46. PubMed ID: 12749533 [TBL] [Abstract][Full Text] [Related]
28. Geometry of reaction interfaces in chaotic flows. Giona M; Cerbelli S; Adrover A Phys Rev Lett; 2002 Jan; 88(2):024501. PubMed ID: 11801019 [TBL] [Abstract][Full Text] [Related]
29. Scaling of lyapunov exponents of coupled chaotic systems. Zillmer R; Ahlers V; Pikovsky A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):332-41. PubMed ID: 11046270 [TBL] [Abstract][Full Text] [Related]
30. Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction. Kiss IZ; Merkin JH; Neufeld Z Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026216. PubMed ID: 15447574 [TBL] [Abstract][Full Text] [Related]
32. Efficient topological chaos embedded in the blinking vortex system. Kin E; Sakajo T Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887 [TBL] [Abstract][Full Text] [Related]
33. Front propagation in a chaotic flow field. Mehrvarzi CO; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012905. PubMed ID: 25122358 [TBL] [Abstract][Full Text] [Related]
34. Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Kang TG; Hulsen MA; Anderson PD; den Toonder JM; Meijer HE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066303. PubMed ID: 18233913 [TBL] [Abstract][Full Text] [Related]
35. Boundary effects on chaotic advection-diffusion chemical reactions. Chertkov M; Lebedev V Phys Rev Lett; 2003 Apr; 90(13):134501. PubMed ID: 12689293 [TBL] [Abstract][Full Text] [Related]
36. Experimental studies of pattern formation in a reaction-advection-diffusion system. Nugent CR; Quarles WM; Solomon TH Phys Rev Lett; 2004 Nov; 93(21):218301. PubMed ID: 15601066 [TBL] [Abstract][Full Text] [Related]