These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15525181)

  • 1. Investigations of the structure of water using mid-IR fiberoptic evanescent wave spectroscopy.
    Raichlin Y; Millo A; Katzir A
    Phys Rev Lett; 2004 Oct; 93(18):185703. PubMed ID: 15525181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.
    Allodi MA; Ioppolo S; Kelley MJ; McGuire BA; Blake GA
    Phys Chem Chem Phys; 2014 Feb; 16(8):3442-55. PubMed ID: 24394213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of hydrocarbons in water by evanescent wave absorption spectroscopy in the near-infrared region.
    Sensfelder E; Bürck J; Ache HJ
    Anal Bioanal Chem; 1996 Mar; 354(7-8):848-51. PubMed ID: 15048400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors.
    Luzinova Y; Zdyrko B; Luzinov I; Mizaikoff B
    Analyst; 2012 Jan; 137(2):333-41. PubMed ID: 22132414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The investigation of water diffusion into teflon copolymer revealed by fiber-optic evanescent wave spectroscopy.
    Raichlin Y; Marx S; Katzir A
    J Phys Chem A; 2007 Jul; 111(28):6131-4. PubMed ID: 17585741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of tetrahedrally coordinated molecules for the explanation of liquid water properties.
    Ludwig R
    Chemphyschem; 2007 Apr; 8(6):938-43. PubMed ID: 17366648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-state thermodynamics of the ST2 model for supercooled water.
    Holten V; Palmer JC; Poole PH; Debenedetti PG; Anisimov MA
    J Chem Phys; 2014 Mar; 140(10):104502. PubMed ID: 24628177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.
    Walker RL; Searles K; Willard JA; Michelsen RR
    J Chem Phys; 2013 Dec; 139(24):244703. PubMed ID: 24387384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements.
    Dolan DH; Johnson JN; Gupta YM
    J Chem Phys; 2005 Aug; 123(6):64702. PubMed ID: 16122330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotope effects in liquid water by infrared spectroscopy. IV. No free OH groups in liquid water.
    Max JJ; Chapados C
    J Chem Phys; 2010 Oct; 133(16):164509. PubMed ID: 21033807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.
    Ni Y; Skinner JL
    J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes.
    Schnippering M; Neil SR; Mackenzie SR; Unwin PR
    Chem Soc Rev; 2011 Jan; 40(1):207-20. PubMed ID: 20886129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20.
    Miura N; Yamada H; Moon A
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1048-53. PubMed ID: 20869910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ trace analysis of oil in water with mid-infrared fiberoptic chemical sensors.
    Luzinova Y; Zdyrko B; Luzinov I; Mizaikoff B
    Anal Chem; 2012 Feb; 84(3):1274-80. PubMed ID: 22103793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice.
    Imoto S; Xantheas SS; Saito S
    J Chem Phys; 2013 Feb; 138(5):054506. PubMed ID: 23406132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR and Ab initio investigations of the MTBE-water complex.
    Li Z; Singh S
    J Phys Chem A; 2008 Sep; 112(37):8593-9. PubMed ID: 18714958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm(-1).
    Max JJ; Chapados C
    J Chem Phys; 2009 Nov; 131(18):184505. PubMed ID: 19916610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure.
    Bergmann U; Di Cicco A; Wernet P; Principi E; Glatzel P; Nilsson A
    J Chem Phys; 2007 Nov; 127(17):174504. PubMed ID: 17994824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of liquid water from polarization-dependent two-photon absorption spectroscopy.
    Elles CG; Rivera CA; Zhang Y; Pieniazek PA; Bradforth SE
    J Chem Phys; 2009 Feb; 130(8):084501. PubMed ID: 19256609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evanescent-wave infrared spectroscopy of solid materials using deformable silver-halide optical fibers.
    Paiss L; Bunimovich D; Katzir A
    Appl Opt; 1993 Oct; 32(30):5867-71. PubMed ID: 20856408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.