These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15525435)

  • 1. New approaches to the microscopic imaging of Trypanosoma brucei.
    Field MC; Allen CL; Dhir V; Goulding D; Hall BS; Morgan GW; Veazey P; Engstler M
    Microsc Microanal; 2004 Oct; 10(5):621-36. PubMed ID: 15525435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of small GTPase function in trypanosomes.
    Field MC; Horn D; Carrington M
    Methods Enzymol; 2008; 438():57-76. PubMed ID: 18413241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural investigation methods for Trypanosoma brucei.
    Höög JL; Gluenz E; Vaughan S; Gull K
    Methods Cell Biol; 2010; 96():175-96. PubMed ID: 20869523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome-wide analysis of gene function by RNA interference in the african trypanosome.
    Subramaniam C; Veazey P; Redmond S; Hayes-Sinclair J; Chambers E; Carrington M; Gull K; Matthews K; Horn D; Field MC
    Eukaryot Cell; 2006 Sep; 5(9):1539-49. PubMed ID: 16963636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular membrane transport systems in Trypanosoma brucei.
    Field MC; Carrington M
    Traffic; 2004 Dec; 5(12):905-13. PubMed ID: 15522093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signalling the genome: the Ras-like small GTPase family of trypanosomatids.
    Field MC
    Trends Parasitol; 2005 Oct; 21(10):447-50. PubMed ID: 16112905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei.
    Vaughan S; Kohl L; Ngai I; Wheeler RJ; Gull K
    Protist; 2008 Jan; 159(1):127-36. PubMed ID: 17945531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of gene expression and genetic manipulation in the Trypanosomatidae.
    Teixeira SM; daRocha WD
    Genet Mol Res; 2003 Mar; 2(1):148-58. PubMed ID: 12917811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interference in Trypanosoma brucei: a high-throughput engine for functional genomics in trypanosomatids?
    Balaña-Fouce R; Reguera RM
    Trends Parasitol; 2007 Aug; 23(8):348-51. PubMed ID: 17604223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New fluorescence markers to distinguish co-infecting Trypanosoma brucei strains in experimental multiple infections.
    Balmer O; Tostado C
    Acta Trop; 2006 Jan; 97(1):94-101. PubMed ID: 16212925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes.
    Farr H; Gull K
    Cell Motil Cytoskeleton; 2009 Jan; 66(1):24-35. PubMed ID: 19009637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component.
    Rout MP; Field MC
    J Biol Chem; 2001 Oct; 276(41):38261-71. PubMed ID: 11477078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
    Baron DM; Ralston KS; Kabututu ZP; Hill KL
    J Cell Sci; 2007 Feb; 120(Pt 3):478-91. PubMed ID: 17227795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes.
    Schneider A; Bursać D; Lithgow T
    Trends Cell Biol; 2008 Jan; 18(1):12-8. PubMed ID: 18068984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei.
    Kubata BK; Nagamune K; Murakami N; Merkel P; Kabututu Z; Martin SK; Kalulu TM; Huq M; Yoshida M; Ohnishi-Kameyama M; Kinoshita T; Duszenko M; Urade Y
    Int J Parasitol; 2005 Jan; 35(1):91-103. PubMed ID: 15619520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of monomorphic and pleomorphic Trypanosoma brucei.
    McCulloch R; Vassella E; Burton P; Boshart M; Barry JD
    Methods Mol Biol; 2004; 262():53-86. PubMed ID: 14769956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux.
    Besteiro S; Barrett MP; Rivière L; Bringaud F
    Trends Parasitol; 2005 Apr; 21(4):185-91. PubMed ID: 15780841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora.
    Innes EA; Vermeulen AN
    Parasitology; 2006; 133 Suppl():S145-68. PubMed ID: 17274844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.