BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15525700)

  • 1. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes.
    Woolfit M; Bromham L
    Mol Biol Evol; 2003 Sep; 20(9):1545-55. PubMed ID: 12832648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum.
    Sorfová P; Skeríková A; Hypsa V
    Syst Appl Microbiol; 2008 Jun; 31(2):88-100. PubMed ID: 18485654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.
    Comas I; Moya A; González-Candelas F
    Syst Biol; 2007 Feb; 56(1):1-16. PubMed ID: 17366133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.
    Gruwell ME; Morse GE; Normark BB
    Mol Phylogenet Evol; 2007 Jul; 44(1):267-80. PubMed ID: 17400002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phylogenomic study of endosymbiotic bacteria.
    Canbäck B; Tamas I; Andersson SG
    Mol Biol Evol; 2004 Jun; 21(6):1110-22. PubMed ID: 15014155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria).
    Vannini C; Pöckl M; Petroni G; Wu QL; Lang E; Stackebrandt E; Schrallhammer M; Richardson PM; Hahn MW
    Environ Microbiol; 2007 Feb; 9(2):347-59. PubMed ID: 17222133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae).
    Thao ML; Baumann P
    Curr Microbiol; 2004 Feb; 48(2):140-4. PubMed ID: 15057483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes).
    Li J; Wang X; Kong X; Zhao K; He S; Mayden RL
    Mol Phylogenet Evol; 2008 May; 47(2):472-87. PubMed ID: 18378468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches.
    Husník F; Chrudimský T; Hypša V
    BMC Biol; 2011 Dec; 9():87. PubMed ID: 22201529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular systematics of aphids and their primary endosymbionts.
    Martinez-Torres D; Buades C; Latorre A; Moya A
    Mol Phylogenet Evol; 2001 Sep; 20(3):437-49. PubMed ID: 11527469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative molecular evolution of primary (Buchnera) and secondary symbionts of aphids based on two protein-coding genes.
    Moya A; Latorre A; Sabater-Muñoz B; Silva FJ
    J Mol Evol; 2002 Aug; 55(2):127-37. PubMed ID: 12107590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the correlation between composition and site-specific evolutionary rate: implications for phylogenetic inference.
    Gowri-Shankar V; Rattray M
    Mol Biol Evol; 2006 Feb; 23(2):352-64. PubMed ID: 16237207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution.
    Blanquart S; Lartillot N
    Mol Biol Evol; 2006 Nov; 23(11):2058-71. PubMed ID: 16931538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia.
    Degnan PH; Lazarus AB; Brock CD; Wernegreen JJ
    Syst Biol; 2004 Feb; 53(1):95-110. PubMed ID: 14965905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement.
    Lefèvre C; Charles H; Vallier A; Delobel B; Farrell B; Heddi A
    Mol Biol Evol; 2004 Jun; 21(6):965-73. PubMed ID: 14739242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular systematics and biogeography of the southern South american freshwater "crabs" Aegla (decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches.
    Pérez-Losada M; Bond-Buckup G; Jara CG; Crandall KA
    Syst Biol; 2004 Oct; 53(5):767-80. PubMed ID: 15545254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics.
    Sheffield NC; Song H; Cameron SL; Whiting MF
    Syst Biol; 2009 Aug; 58(4):381-94. PubMed ID: 20525592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal vent gastropods from the same family (Provannidae) harbour epsilon- and gamma-proteobacterial endosymbionts.
    Urakawa H; Dubilier N; Fujiwara Y; Cunningham DE; Kojima S; Stahl DA
    Environ Microbiol; 2005 May; 7(5):750-4. PubMed ID: 15819856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.