BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15526345)

  • 21. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease.
    Trist BG; Hare DJ; Double KL
    Aging Cell; 2019 Dec; 18(6):e13031. PubMed ID: 31432604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial alterations in Parkinson's disease human samples and cellular models.
    Zilocchi M; Finzi G; Lualdi M; Sessa F; Fasano M; Alberio T
    Neurochem Int; 2018 Sep; 118():61-72. PubMed ID: 29704589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.
    Zhang J; Perry G; Smith MA; Robertson D; Olson SJ; Graham DG; Montine TJ
    Am J Pathol; 1999 May; 154(5):1423-9. PubMed ID: 10329595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absence of prostate apoptosis response-4 protein in substantia nigra of Parkinson's disease autopsies.
    Moos T; Jensen PH
    Acta Neuropathol; 2004 Jan; 107(1):23-6. PubMed ID: 13680279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins.
    Kanagaraj N; Beiping H; Dheen ST; Tay SS
    Neuroscience; 2014 Jul; 272():167-79. PubMed ID: 24792712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease.
    Tripathy D; Chakraborty J; Mohanakumar KP
    Free Radic Res; 2015; 49(9):1129-39. PubMed ID: 25968946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High affinity hemoglobin and Parkinson's disease.
    Graham J; Hobson D; Ponnampalam A
    Med Hypotheses; 2014 Dec; 83(6):819-21. PubMed ID: 25468785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of dopamine in the pathogenesis of GBA1-linked Parkinson's disease.
    Burbulla LF; Krainc D
    Neurobiol Dis; 2019 Dec; 132():104545. PubMed ID: 31351996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease.
    Anglade P; Vyas S; Javoy-Agid F; Herrero MT; Michel PP; Marquez J; Mouatt-Prigent A; Ruberg M; Hirsch EC; Agid Y
    Histol Histopathol; 1997 Jan; 12(1):25-31. PubMed ID: 9046040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease.
    Plaitakis A; Shashidharan P
    J Neurol; 2000 Apr; 247 Suppl 2():II25-35. PubMed ID: 10991662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Dopaminergic Functions in Drosophila.
    Inoshita T; Takemoto D; Imai Y
    Methods Mol Biol; 2021; 2322():185-193. PubMed ID: 34043204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissues.
    Chen C; Vincent AE; Blain AP; Smith AL; Turnbull DM; Reeve AK
    Neurobiol Dis; 2020 Feb; 134():104631. PubMed ID: 31689514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a self-perpetuating crosstalk?
    Vairetti M; Ferrigno A; Rizzo V; Ambrosi G; Bianchi A; Richelmi P; Blandini F; Armentero MT
    Biochim Biophys Acta; 2012 Feb; 1822(2):176-84. PubMed ID: 22119596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Alterations in Metabolism and Proteolysis-Related Proteins in Human Parkinson's Disease Substantia Nigra.
    Grünblatt E; Ruder J; Monoranu CM; Riederer P; Youdim MB; Mandel SA
    Neurotox Res; 2018 Apr; 33(3):560-568. PubMed ID: 29218503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson's disease.
    Jin J; Meredith GE; Chen L; Zhou Y; Xu J; Shie FS; Lockhart P; Zhang J
    Brain Res Mol Brain Res; 2005 Mar; 134(1):119-38. PubMed ID: 15790536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease.
    Burbulla LF; Song P; Mazzulli JR; Zampese E; Wong YC; Jeon S; Santos DP; Blanz J; Obermaier CD; Strojny C; Savas JN; Kiskinis E; Zhuang X; Krüger R; Surmeier DJ; Krainc D
    Science; 2017 Sep; 357(6357):1255-1261. PubMed ID: 28882997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70.
    Mandel S; Grunblatt E; Riederer P; Amariglio N; Jacob-Hirsch J; Rechavi G; Youdim MB
    Ann N Y Acad Sci; 2005 Aug; 1053():356-75. PubMed ID: 16179542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease.
    Yamada M; Iwatsubo T; Mizuno Y; Mochizuki H
    J Neurochem; 2004 Oct; 91(2):451-61. PubMed ID: 15447678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.