BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 1552713)

  • 1. EDRF role in renal function and blood pressure of normal rats and rats with obstructive uropathy.
    Reyes AA; Martin D; Settle S; Klahr S
    Kidney Int; 1992 Feb; 41(2):403-13. PubMed ID: 1552713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P-450 pathway in renal function of normal rats and rats with bilateral ureteral obstruction.
    Reyes AA; Klahr S
    Proc Soc Exp Biol Med; 1992 Dec; 201(3):278-83. PubMed ID: 1438345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the 5-lipooxygenase pathway in obstructive nephropathy.
    Reyes AA; Lefkowith J; Pippin J; Klahr S
    Kidney Int; 1992 Jan; 41(1):100-6. PubMed ID: 1317475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal function after release of ureteral obstruction: role of endothelin and the renal artery endothelium.
    Reyes AA; Klahr S
    Kidney Int; 1992 Sep; 42(3):632-8. PubMed ID: 1405341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of platelet-activating factor in renal function in normal rats and rats with bilateral ureteral obstruction.
    Reyes AA; Klahr S
    Proc Soc Exp Biol Med; 1991 Oct; 198(1):572-8. PubMed ID: 1891471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat.
    Chevalier RL; Thornhill BA; Gomez RA
    Kidney Int; 1992 Aug; 42(2):400-6. PubMed ID: 1383595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vasopressin in rats with bilateral ureteral obstruction.
    Reyes AA; Robertson G; Klahr S
    Proc Soc Exp Biol Med; 1991 May; 197(1):49-55. PubMed ID: 2020670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide inhibition in rats improves blood pressure and renal function during hypovolemic shock.
    Lieberthal W; McGarry AE; Sheils J; Valeri CR
    Am J Physiol; 1991 Nov; 261(5 Pt 2):F868-72. PubMed ID: 1951718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low plasma and renal tissue levels of L-arginine in rats with obstructive nephropathy.
    Reyes AA; Karl IE; Yates J; Klahr S
    Kidney Int; 1994 Mar; 45(3):782-7. PubMed ID: 8196279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine-2 receptor blockade potentiates the renal effects of nitric oxide inhibition in humans.
    Montanari A; Tateo E; Fasoli E; Donatini A; Cimolato B; Perinotto P; Dall'Aglio P
    Hypertension; 1998 Jan; 31(1 Pt 2):277-82. PubMed ID: 9453316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal blood flow and vasodilatory ability prior to and following release of 24 hours bilateral ureteral obstruction in rats.
    Hope A; Clausen G
    Acta Physiol Scand; 1984 Aug; 121(4):363-7. PubMed ID: 6485837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide in renal function in rats with short and prolonged periods of streptozotocin-induced diabetes.
    Suanarunsawat T; Klongpanichapak S; Chaiyabutr N
    Diabetes Obes Metab; 1999 Nov; 1(6):339-46. PubMed ID: 11225650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats.
    Ito K; Chen J; Seshan SV; Khodadadian JJ; Gallagher R; El Chaar M; Vaughan ED; Poppas DP; Felsen D
    Kidney Int; 2005 Aug; 68(2):515-28. PubMed ID: 16014028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetylcysteine protects against renal injury following bilateral ureteral obstruction.
    Shimizu MH; Danilovic A; Andrade L; Volpini RA; Libório AB; Sanches TR; Seguro AC
    Nephrol Dial Transplant; 2008 Oct; 23(10):3067-73. PubMed ID: 18469310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-arginine decreases the infiltration of the kidney by macrophages in obstructive nephropathy and puromycin-induced nephrosis.
    Reyes AA; Porras BH; Chasalow FI; Klahr S
    Kidney Int; 1994 May; 45(5):1346-54. PubMed ID: 8072247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet.
    Solhaug MJ; Wallace MR; Granger JP
    Pediatr Res; 1993 Dec; 34(6):750-4. PubMed ID: 8108187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor.
    Tolins JP
    J Lab Clin Med; 1992 Dec; 120(6):941-8. PubMed ID: 1453114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.
    Baylis C; Harton P; Engels K
    J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume expansion enhances the recovery of renal function and prolongs the diuresis and natriuresis after release of bilateral ureteral obstruction: a possible role for atrial natriuretic peptide.
    Gulmi FA; Matthews GJ; Marion D; von Lutterotti N; Vaughan ED
    J Urol; 1995 Apr; 153(4):1276-83. PubMed ID: 7869528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes.
    Komers R; Allen TJ; Cooper ME
    Diabetes; 1994 Oct; 43(10):1190-7. PubMed ID: 7926287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.