These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 15527138)
1. Insights into the retention mechanism of neutral organic compounds on polar chemically bonded stationary phases in reversed-phase liquid chromatography. Ali Z; Poole CF J Chromatogr A; 2004 Oct; 1052(1-2):199-204. PubMed ID: 15527138 [TBL] [Abstract][Full Text] [Related]
2. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases. West C; Lesellier E J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535 [TBL] [Abstract][Full Text] [Related]
3. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases. West C; Lesellier E J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536 [TBL] [Abstract][Full Text] [Related]
4. System maps for retention of small neutral compounds on a biphenylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. Atapattu SN; Poole CF; Praseuth MB J Chromatogr A; 2016 Dec; 1478():68-74. PubMed ID: 27916389 [TBL] [Abstract][Full Text] [Related]
5. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship. Jiang D; Wu D; Zhou G; Dai Y; Yang J; Jin Y; Fu Q; Ke Y; Liang X J Chromatogr A; 2023 Feb; 1690():463781. PubMed ID: 36638687 [TBL] [Abstract][Full Text] [Related]
6. Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. Fu Q; Jiang D; Xin H; Dai Z; Cai J; Ke Y; Jin Y; Liang X J Chromatogr A; 2019 May; 1593():127-134. PubMed ID: 30885402 [TBL] [Abstract][Full Text] [Related]
7. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487 [TBL] [Abstract][Full Text] [Related]
9. Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. Poole CF J Chromatogr A; 2019 Aug; 1600():112-126. PubMed ID: 31128882 [TBL] [Abstract][Full Text] [Related]
10. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. Poole CF J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Aug; 1092():207-219. PubMed ID: 29908470 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. Soukup J; Jandera P J Chromatogr A; 2014 Dec; 1374():102-111. PubMed ID: 25544246 [TBL] [Abstract][Full Text] [Related]
12. Retention process in reversed phase TLC systems with polar bonded stationary phases. Zapała W; Waksmundzka-Hajnos M J Sep Sci; 2005 Apr; 28(6):566-74. PubMed ID: 15881087 [TBL] [Abstract][Full Text] [Related]
13. Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model. da Silva CG; Collins CH; Lesellier E; West C J Chromatogr A; 2013 Nov; 1315():176-87. PubMed ID: 24079548 [TBL] [Abstract][Full Text] [Related]
14. Retention properties of acetone-water mobile phases on a biphenylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. Atapattu SN J Sep Sci; 2022 May; 45(9):1487-1492. PubMed ID: 35142441 [TBL] [Abstract][Full Text] [Related]
15. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography. Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531 [TBL] [Abstract][Full Text] [Related]
16. Stationary and mobile phases in hydrophilic interaction chromatography: a review. Jandera P Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708 [TBL] [Abstract][Full Text] [Related]
17. Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model. Poole CF J Chromatogr A; 2020 Dec; 1633():461652. PubMed ID: 33161359 [TBL] [Abstract][Full Text] [Related]
18. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
19. Phenyl-bonded stationary phases--the influence of polar functional groups on retention and selectivity in reversed-phase liquid chromatography. Bocian S; Buszewski B J Sep Sci; 2014 Dec; 37(23):3435-42. PubMed ID: 25231379 [TBL] [Abstract][Full Text] [Related]
20. Characterization of reversed-phase columns using the linear free energy relationship. III. Effect of the organic modifier and the mobile phase composition. Sándi A; Nagy M; Szepesy L J Chromatogr A; 2000 Oct; 893(2):215-34. PubMed ID: 11073293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]