These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15527353)

  • 1. Ultrafast vibrational spectroscopy of water and aqueous N-methylacetamide: Comparison of different electronic structure/molecular dynamics approaches.
    Schmidt JR; Corcelli SA; Skinner JL
    J Chem Phys; 2004 Nov; 121(18):8887-96. PubMed ID: 15527353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vibrational Stokes shift of water (HOD in D2O).
    Wang Z; Pang Y; Dlott DD
    J Chem Phys; 2004 May; 120(18):8345-8. PubMed ID: 15267756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O.
    Corcelli SA; Lawrence CP; Skinner JL
    J Chem Phys; 2004 May; 120(17):8107-17. PubMed ID: 15267730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective solvent coordinates for the infrared spectrum of HOD in D2O based on an ab initio electrostatic map.
    Hayashi T; la Cour Jansen T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Jan; 109(1):64-82. PubMed ID: 16839090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics.
    Koch DM; Timerghazin QK; Peslherbe GH; Ladanyi BM; Hynes JT
    J Phys Chem A; 2006 Feb; 110(4):1438-54. PubMed ID: 16435804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the influence of the water electrostatic field on the amide group vibrational frequencies.
    Bour P
    J Chem Phys; 2004 Oct; 121(16):7545-8. PubMed ID: 15485211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational energy dynamics of glycine, N-methylacetamide, and benzoate anion in aqueous (D2O) solution.
    Fang Y; Shigeto S; Seong NH; Dlott DD
    J Phys Chem A; 2009 Jan; 113(1):75-84. PubMed ID: 19067563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientational mechanisms in liquid crystalline systems. 2. The contribution to solute ordering from the reaction field interaction between the solute electric quadrupole moment and the solvent electric field gradient.
    Celebre G; Ionescu A
    J Phys Chem B; 2010 Jan; 114(1):235-41. PubMed ID: 20017544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment.
    Fujisaki H; Stock G
    J Chem Phys; 2008 Oct; 129(13):134110. PubMed ID: 19045081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151.
    Neugebauer J; Jacob CR; Wesolowski TA; Baerends EJ
    J Phys Chem A; 2005 Sep; 109(34):7805-14. PubMed ID: 16834158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational solvatochromism. II. A first-principle theory of solvation-induced vibrational frequency shift based on effective fragment potential method.
    Błasiak B; Cho M
    J Chem Phys; 2014 Apr; 140(16):164107. PubMed ID: 24784253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches for the calculation of vibrational frequencies in liquids: comparison to benchmarks for azide/water clusters.
    Li S; Schmidt JR; Corcelli SA; Lawrence CP; Skinner JL
    J Chem Phys; 2006 May; 124(20):204110. PubMed ID: 16774322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in D(2)O.
    Auer BM; Skinner JL
    J Chem Phys; 2008 Dec; 129(21):214705. PubMed ID: 19063573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water.
    Jansen TL; Auer BM; Yang M; Skinner JL
    J Chem Phys; 2010 Jun; 132(22):224503. PubMed ID: 20550404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.