BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15527891)

  • 1. Ethanol increases retinoic acid production in cerebellar astrocytes and in cerebellum.
    McCaffery P; Koul O; Smith D; Napoli JL; Chen N; Ullman MD
    Brain Res Dev Brain Res; 2004 Nov; 153(2):233-41. PubMed ID: 15527891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of cerebellar mRNA specific for BDNF, p75NTR, and TrkB receptor isoforms occur within hours of ethanol administration to 4-day-old rat pups.
    Ge Y; Belcher SM; Light KE
    Brain Res Dev Brain Res; 2004 Jul; 151(1-2):99-109. PubMed ID: 15246696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons.
    Chu J; Tong M; de la Monte SM
    Acta Neuropathol; 2007 Jun; 113(6):659-73. PubMed ID: 17431646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome.
    Deltour L; Ang HL; Duester G
    FASEB J; 1996 Jul; 10(9):1050-7. PubMed ID: 8801166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders.
    Kumar A; Singh CK; DiPette DD; Singh US
    Alcohol Clin Exp Res; 2010 May; 34(5):928-37. PubMed ID: 20201933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.
    González A; Pariente JA; Salido GM
    Brain Res; 2007 Oct; 1178():28-37. PubMed ID: 17888892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum.
    Smith AM; Zeve DR; Grisel JJ; Chen WJ
    Brain Res Dev Brain Res; 2005 Dec; 160(2):231-8. PubMed ID: 16256207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of ethanol effects in cerebellum by activation of endogenous noradrenergic inputs.
    Wang Y; Freund RK; Palmer MR
    J Pharmacol Exp Ther; 1999 Jan; 288(1):211-20. PubMed ID: 9862773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol-induced increase of sphingosine recycling for ganglioside biosynthesis: a study performed on cerebellar granule cells in culture.
    Ravasi D; Ferraretto A; Omodeo-salè MF; Tettamanti G; Pitto M; Masserini M
    J Neurosci Res; 2002 Jul; 69(1):80-5. PubMed ID: 12111818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems.
    Siler-Marsiglio KI; Pan Q; Paiva M; Madorsky I; Khurana NC; Heaton MB
    Brain Res; 2005 Aug; 1052(2):202-11. PubMed ID: 16024002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro.
    Mulholland PJ; Self RL; Stepanyan TD; Little HJ; Littleton JM; Prendergast MA
    Neuroscience; 2005; 135(4):1129-39. PubMed ID: 16165302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death.
    Watts LT; Rathinam ML; Schenker S; Henderson GI
    J Neurosci Res; 2005 Jun; 80(5):655-66. PubMed ID: 15880562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes.
    Anelli V; Bassi R; Tettamanti G; Viani P; Riboni L
    J Neurochem; 2005 Mar; 92(5):1204-15. PubMed ID: 15715670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells.
    Rexer BN; Zheng WL; Ong DE
    Cancer Res; 2001 Oct; 61(19):7065-70. PubMed ID: 11585737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal vulnerability of fetal cerebellar Purkinje cells to chronic binge alcohol exposure: ovine model.
    Ramadoss J; Lunde ER; Chen WJ; West JR; Cudd TA
    Alcohol Clin Exp Res; 2007 Oct; 31(10):1738-45. PubMed ID: 17681031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acute ethanol exposure on regulatory mechanisms of Bcl-2-associated apoptosis promoter, bad, in neonatal rat cerebellum: differential effects during vulnerable and resistant developmental periods.
    Siler-Marsiglio KI; Madorsky I; Pan Q; Paiva M; Neeley AW; Shaw G; Heaton MB
    Alcohol Clin Exp Res; 2006 Jun; 30(6):1031-8. PubMed ID: 16737462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinoic acid synthesis by a population of NG2-positive cells in the injured spinal cord.
    Mey J; J Morassutti D; Brook G; Liu RH; Zhang YP; Koopmans G; McCaffery P
    Eur J Neurosci; 2005 Mar; 21(6):1555-68. PubMed ID: 15845083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcohol exposure on postnatal day 5 induces Purkinje cell loss and evidence of Purkinje cell degradation in lobule I of rat cerebellum.
    Lee Y; Rowe J; Eskue K; West JR; Maier SE
    Alcohol; 2008 Jun; 42(4):295-302. PubMed ID: 18400452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of alcohol dehydrogenase in retinoic acid homeostasis and fetal alcohol syndrome.
    Shean ML; Duester G
    Alcohol Alcohol Suppl; 1993; 2():51-6. PubMed ID: 7748347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes.
    Kampmann E; Johann S; van Neerven S; Beyer C; Mey J
    J Neurochem; 2008 Jul; 106(1):320-32. PubMed ID: 18394023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.