BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 15528166)

  • 41. Chaperone action of a versatile small heat shock protein from Methanococcoides burtonii, a cold adapted archaeon.
    Laksanalamai P; Narayan S; Luo H; Robb FT
    Proteins; 2009 May; 75(2):275-81. PubMed ID: 18951410
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional identification of the SecB homologue in Methanococcus jannaschii and direct interaction of SecB with trigger factor.
    Ha SC; Lee TH; Cha SS; Kim KK
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1039-44. PubMed ID: 14985117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30.
    Norris CE; Brown MA; Hickey E; Weber LA; Hightower LE
    Mol Biol Evol; 1997 Oct; 14(10):1050-61. PubMed ID: 9335145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NH2-terminal stabilization of small heat shock protein structure: a comparison of two NH2-terminal deletion mutants of alphaA-crystallin.
    Yang C; Salerno JC; Koretz JF
    Mol Vis; 2005 Aug; 11():641-7. PubMed ID: 16145541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana.
    Sun Y; Bojikova-Fournier S; MacRae TH
    FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling.
    Mosser DD; Ho S; Glover JR
    Biochemistry; 2004 Jun; 43(25):8107-15. PubMed ID: 15209506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos.
    Tam Y; Heikkila JJ
    Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An N-terminal 33-amino-acid-deletion variant of hsp25 retains oligomerization and functional properties.
    Guo Z; Cooper LF
    Biochem Biophys Res Commun; 2000 Apr; 270(1):183-9. PubMed ID: 10733925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor.
    Gelinas AD; Toth J; Bethoney KA; Langsetmo K; Stafford WF; Harrison CJ
    Biochemistry; 2003 Aug; 42(30):9050-9. PubMed ID: 12885238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 20S proteasome prevents aggregation of heat-denatured proteins without PA700 regulatory subcomplex like a molecular chaperone.
    Yano M; Koumoto Y; Kanesaki Y; Wu X; Kido H
    Biomacromolecules; 2004; 5(4):1465-9. PubMed ID: 15244466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular localization of the heat shock protein, HSP110, in Xenopus laevis A6 kidney epithelial cells.
    Gauley J; Young JT; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):133-8. PubMed ID: 18606238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hsp25, a member of the Hsp30 family, promotes inclusion formation in response to stress.
    Katoh Y; Fujimoto M; Nakamura K; Inouye S; Sugahara K; Izu H; Nakai A
    FEBS Lett; 2004 May; 565(1-3):28-32. PubMed ID: 15135047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli.
    Thomas JG; Baneyx F
    Protein Expr Purif; 1997 Dec; 11(3):289-96. PubMed ID: 9425634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chaperone activity of cytosolic small heat shock proteins from wheat.
    Basha E; Lee GJ; Demeler B; Vierling E
    Eur J Biochem; 2004 Apr; 271(8):1426-36. PubMed ID: 15066169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins.
    Heikkila JJ; Kaldis A; Morrow G; Tanguay RM
    Biotechnol Adv; 2007; 25(4):385-95. PubMed ID: 17459646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of chaperone-like activity of human haptoglobin: conformational changes under heat shock conditions and localization of interaction sites.
    Ettrich R; Brandt W; Kopecký V; Baumruk V; Hofbauerová K; Pavlícek Z
    Biol Chem; 2002 Oct; 383(10):1667-76. PubMed ID: 12452443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.