These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15528394)

  • 1. Intramuscular pressure-induced inhibition of cardiac contraction: implications for cardiac-locomotor synchronization.
    Niizeki K
    Am J Physiol Regul Integr Comp Physiol; 2005 Mar; 288(3):R645-50. PubMed ID: 15528394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise.
    Loenneke JP; Fahs CA; Rossow LM; Sherk VD; Thiebaud RS; Abe T; Bemben DA; Bemben MG
    Eur J Appl Physiol; 2012 Aug; 112(8):2903-12. PubMed ID: 22143843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cuff type on arterial occlusion.
    Loenneke JP; Thiebaud RS; Fahs CA; Rossow LM; Abe T; Bemben MG
    Clin Physiol Funct Imaging; 2013 Jul; 33(4):325-7. PubMed ID: 23692624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the autoregulatory mechanisms between central retinal artery and posterior ciliary arteries after thigh cuff deflation in healthy subjects.
    Kaya S; Kolodjaschna J; Berisha F; Schmetterer L; Garhöfer G
    Microvasc Res; 2011 Nov; 82(3):269-73. PubMed ID: 21807001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormally elevated intramuscular pressure impairs muscle blood flow at rest after exercise.
    Zhang Q; Styf J
    Scand J Med Sci Sports; 2004 Aug; 14(4):215-20. PubMed ID: 15265143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of cardiac and locomotor rhythms.
    Kirby RL; Nugent ST; Marlow RW; MacLeod DA; Marble AE
    J Appl Physiol (1985); 1989 Jan; 66(1):323-9. PubMed ID: 2917937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leg intramuscular pressures during locomotion in humans.
    Ballard RE; Watenpaugh DE; Breit GA; Murthy G; Holley DC; Hargens AR
    J Appl Physiol (1985); 1998 Jun; 84(6):1976-81. PubMed ID: 9609792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do vasoregulatory mechanisms in exercising human muscle compensate for changes in arterial perfusion pressure?
    Walker KL; Saunders NR; Jensen D; Kuk JL; Wong SL; Pyke KE; Dwyer EM; Tschakovsky ME
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H2928-36. PubMed ID: 17704292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the human triceps surae muscle to electrical stimulation during varying levels of blood flow restriction.
    Cole MA; Brown MD
    Eur J Appl Physiol; 2000 May; 82(1-2):39-44. PubMed ID: 10879441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise.
    Gallagher KM; Fadel PJ; Smith SA; Norton KH; Querry RG; Olivencia-Yurvati A; Raven PB
    J Appl Physiol (1985); 2001 Nov; 91(5):2351-8. PubMed ID: 11641380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the autoregulatory mechanisms between middle cerebral artery and ophthalmic artery after thigh cuff deflation in healthy subjects.
    Kolodjaschna J; Berisha F; Lung S; Schima H; Polska E; Schmetterer L
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):636-40. PubMed ID: 15671293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of interval training combined with thigh cuffs pressure on maximal and submaximal exercise performance.
    Keramidas ME; Kounalakis SN; Geladas ND
    Clin Physiol Funct Imaging; 2012 May; 32(3):205-13. PubMed ID: 22487155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventilatory responses to dynamic exercise elicited by intramuscular sensors.
    Smith SA; Gallagher KM; Norton KH; Querry RG; Welch-O'Connor RM; Raven PB
    Med Sci Sports Exerc; 1999 Feb; 31(2):277-86. PubMed ID: 10063818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rhythmic muscle compression on arterial blood pressure at rest and during dynamic exercise in humans.
    Nishiyasu T; Sone R; Tan N; Maekawa T; Kondo N
    Acta Physiol Scand; 2001 Nov; 173(3):287-95. PubMed ID: 11736691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cardio-locomotor synchronization during running and cycling.
    Nomura K; Takei Y; Yanagida Y
    Eur J Appl Physiol; 2003 May; 89(3-4):221-9. PubMed ID: 12736829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular responses to external compression of human calf muscle vary during graded metaboreflex stimulation.
    Bell MP; White MJ
    Exp Physiol; 2005 May; 90(3):383-91. PubMed ID: 15708877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.
    Osada T; RÃ¥degran G
    Jpn J Physiol; 2005 Feb; 55(1):19-28. PubMed ID: 15796786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of limb elevation and increased intramuscular pressure on human tibialis anterior muscle blood flow.
    Zhang Q; Styf J; Lindberg LG
    Eur J Appl Physiol; 2001 Oct; 85(6):567-71. PubMed ID: 11718286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haemodynamic and cerebrovascular effects of intermittent lower-leg compression as countermeasure to orthostatic stress.
    Gibbons TD; Zuj KA; Prince CN; Kingston DC; Peterson SD; Hughson RL
    Exp Physiol; 2019 Dec; 104(12):1790-1800. PubMed ID: 31578774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac, respiratory, and locomotor coordination during walking in humans.
    Niizeki K; Kawahara K; Miyamoto Y
    Folia Primatol (Basel); 1996; 66(1-4):226-39. PubMed ID: 8953762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.