These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15528440)

  • 1. Cation exchange reactions in ionic nanocrystals.
    Son DH; Hughes SM; Yin Y; Paul Alivisatos A
    Science; 2004 Nov; 306(5698):1009-12. PubMed ID: 15528440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals.
    Wark SE; Hsia CH; Son DH
    J Am Chem Soc; 2008 Jul; 130(29):9550-5. PubMed ID: 18588299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of Ionic Nanocrystals via Full and Partial Ion Exchange Reactions.
    Saruyama M; Sato R; Teranishi T
    Acc Chem Res; 2021 Feb; 54(4):765-775. PubMed ID: 33533609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions.
    Luther JM; Zheng H; Sadtler B; Alivisatos AP
    J Am Chem Soc; 2009 Nov; 131(46):16851-7. PubMed ID: 19863102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoheterostructure cation exchange: anionic framework conservation.
    Jain PK; Amirav L; Aloni S; Alivisatos AP
    J Am Chem Soc; 2010 Jul; 132(29):9997-9. PubMed ID: 20593896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syringe pump-assisted synthesis of water-soluble cubic structure Ag2Se nanocrystals by a cation-exchange reaction.
    Wang SB; Hu B; Liu CC; Yu SH
    J Colloid Interface Sci; 2008 Sep; 325(2):351-5. PubMed ID: 18597765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.
    Rivest JB; Jain PK
    Chem Soc Rev; 2013 Jan; 42(1):89-96. PubMed ID: 22968228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Anion and Cation Exchange Reactions for Complete Material Transformations of Nanoparticles with Morphological Retention.
    Hodges JM; Kletetschka K; Fenton JL; Read CG; Schaak RE
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8669-72. PubMed ID: 26110653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of Metastable Wurtzite-Type CoS and MnS.
    Powell AE; Hodges JM; Schaak RE
    J Am Chem Soc; 2016 Jan; 138(2):471-4. PubMed ID: 26689081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions.
    Wu HL; Sato R; Yamaguchi A; Kimura M; Haruta M; Kurata H; Teranishi T
    Science; 2016 Mar; 351(6279):1306-10. PubMed ID: 26989249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective facet reactivity during cation exchange in cadmium sulfide nanorods.
    Sadtler B; Demchenko DO; Zheng H; Hughes SM; Merkle MG; Dahmen U; Wang LW; Alivisatos AP
    J Am Chem Soc; 2009 Apr; 131(14):5285-93. PubMed ID: 19351206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening.
    Chen Y; Johnson E; Peng X
    J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications.
    Gui J; Ji M; Liu J; Xu M; Zhang J; Zhu H
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3683-7. PubMed ID: 25655404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doping semiconductor nanocrystals.
    Erwin SC; Zu L; Haftel MI; Efros AL; Kennedy TA; Norris DJ
    Nature; 2005 Jul; 436(7047):91-4. PubMed ID: 16001066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhedral gold nanocrystals with O h symmetry: from octahedra to cubes.
    Seo D; Park JC; Song H
    J Am Chem Soc; 2006 Nov; 128(46):14863-70. PubMed ID: 17105296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Selective Cation Exchange in the Synthesis of Zincblende MnS and CoS Nanocrystals.
    Fenton JL; Schaak RE
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6464-6467. PubMed ID: 28464360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size control of gold nanocrystals in citrate reduction: the third role of citrate.
    Ji X; Song X; Li J; Bai Y; Yang W; Peng X
    J Am Chem Soc; 2007 Nov; 129(45):13939-48. PubMed ID: 17948996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of PbSe nanocrystals: A growth toward nanocubes.
    Lu W; Fang J; Ding Y; Wang ZL
    J Phys Chem B; 2005 Oct; 109(41):19219-22. PubMed ID: 16853481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.