These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 15528447)
1. Tracking SNARE complex formation in live endocrine cells. An SJ; Almers W Science; 2004 Nov; 306(5698):1042-6. PubMed ID: 15528447 [TBL] [Abstract][Full Text] [Related]
2. An immunohistochemical method that distinguishes free from complexed SNAP-25. Xiao J; Xia Z; Pradhan A; Zhou Q; Liu Y J Neurosci Res; 2004 Jan; 75(1):143-51. PubMed ID: 14689457 [TBL] [Abstract][Full Text] [Related]
3. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. Antonin W; Holroyd C; Fasshauer D; Pabst S; Von Mollard GF; Jahn R EMBO J; 2000 Dec; 19(23):6453-64. PubMed ID: 11101518 [TBL] [Abstract][Full Text] [Related]
4. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343 [TBL] [Abstract][Full Text] [Related]
5. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Hu K; Carroll J; Fedorovich S; Rickman C; Sukhodub A; Davletov B Nature; 2002 Feb; 415(6872):646-50. PubMed ID: 11832947 [TBL] [Abstract][Full Text] [Related]
6. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Sørensen JB; Matti U; Wei SH; Nehring RB; Voets T; Ashery U; Binz T; Neher E; Rettig J Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1627-32. PubMed ID: 11830673 [TBL] [Abstract][Full Text] [Related]
8. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Fasshauer D; Eliason WK; Brünger AT; Jahn R Biochemistry; 1998 Jul; 37(29):10354-62. PubMed ID: 9671503 [TBL] [Abstract][Full Text] [Related]
9. Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity. Liu J; Guo T; Wei Y; Liu M; Sui SF Biochem Biophys Res Commun; 2006 Aug; 347(2):413-9. PubMed ID: 16828463 [TBL] [Abstract][Full Text] [Related]
10. Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. Veit M Biochem J; 2000 Jan; 345 Pt 1(Pt 1):145-51. PubMed ID: 10600650 [TBL] [Abstract][Full Text] [Related]
11. Structure and dynamics of a two-helix SNARE complex in live cells. Halemani ND; Bethani I; Rizzoli SO; Lang T Traffic; 2010 Mar; 11(3):394-404. PubMed ID: 20002656 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Buxton P; Zhang XM; Walsh B; Sriratana A; Schenberg I; Manickam E; Rowe T Biochem J; 2003 Oct; 375(Pt 2):433-40. PubMed ID: 12877659 [TBL] [Abstract][Full Text] [Related]
13. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. Lang T; Margittai M; Hölzler H; Jahn R J Cell Biol; 2002 Aug; 158(4):751-60. PubMed ID: 12177041 [TBL] [Abstract][Full Text] [Related]
14. A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery. Fournier KM; Robinson MB Neurochem Int; 2006; 48(6-7):596-603. PubMed ID: 16516346 [TBL] [Abstract][Full Text] [Related]
15. Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function. Burgoyne RD; Morgan A Bioessays; 1998 Apr; 20(4):328-35. PubMed ID: 9619104 [TBL] [Abstract][Full Text] [Related]
16. Evidence for structural and functional diversity among SDS-resistant SNARE complexes in neuroendocrine cells. Kubista H; Edelbauer H; Boehm S J Cell Sci; 2004 Feb; 117(Pt 6):955-66. PubMed ID: 14762114 [TBL] [Abstract][Full Text] [Related]
17. Regulation of neuronal SNARE assembly by the membrane. Kweon DH; Kim CS; Shin YK Nat Struct Biol; 2003 Jun; 10(6):440-7. PubMed ID: 12740606 [TBL] [Abstract][Full Text] [Related]
18. Glucose uptake in PC12 cells: GLUT3 vesicle trafficking and fusion as revealed with a novel GLUT3-GFP fusion protein. Heather West Greenlee M; Uemura E; Carpenter SL; Doyle RT; Buss JE J Neurosci Res; 2003 Aug; 73(4):518-25. PubMed ID: 12898536 [TBL] [Abstract][Full Text] [Related]
19. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Blackmer T; Larsen EC; Bartleson C; Kowalchyk JA; Yoon EJ; Preininger AM; Alford S; Hamm HE; Martin TF Nat Neurosci; 2005 Apr; 8(4):421-5. PubMed ID: 15778713 [TBL] [Abstract][Full Text] [Related]