BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 15528479)

  • 21. Selective uptake of high-density lipoprotein-associated cholesteryl esters by human hepatocytes in primary culture.
    Rinninger F; Brundert M; Jäckle S; Galle PR; Busch C; Izbicki JR; Rogiers X; Henne-Bruns D; Kremer B; Broelsch CE
    Hepatology; 1994 May; 19(5):1100-14. PubMed ID: 8175132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scavenger receptor BI (SR-BI) mediates a higher selective cholesteryl ester uptake from LpA-I compared with LpA-I:A-II lipoprotein particles.
    Rinninger F; Brundert M; Budzinski RM; Fruchart JC; Greten H; Castro GR
    Atherosclerosis; 2003 Jan; 166(1):31-40. PubMed ID: 12482548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scavenger receptor type BI potentiates reverse cholesterol transport system by removing cholesterol ester from HDL.
    Kinoshita M; Fujita M; Usui S; Maeda Y; Kudo M; Hirota D; Suda T; Taki M; Okazaki M; Teramoto T
    Atherosclerosis; 2004 Apr; 173(2):197-202. PubMed ID: 15064092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mouse CD36 has opposite effects on LDL and oxidized LDL metabolism in vivo.
    Luangrath V; Brodeur MR; Rhainds D; Brissette L
    Arterioscler Thromb Vasc Biol; 2008 Jul; 28(7):1290-5. PubMed ID: 18436808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apolipoproteins C-II and C-III inhibit selective uptake of low- and high-density lipoprotein cholesteryl esters in HepG2 cells.
    Huard K; Bourgeois P; Rhainds D; Falstrault L; Cohn JS; Brissette L
    Int J Biochem Cell Biol; 2005 Jun; 37(6):1308-18. PubMed ID: 15778093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probucol enhances selective uptake of HDL-associated cholesteryl esters in vitro by a scavenger receptor B-I-dependent mechanism.
    Rinninger F; Wang N; Ramakrishnan R; Jiang XC; Tall AR
    Arterioscler Thromb Vasc Biol; 1999 May; 19(5):1325-32. PubMed ID: 10323786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI.
    Brundert M; Heeren J; Bahar-Bayansar M; Ewert A; Moore KJ; Rinninger F
    J Lipid Res; 2006 Nov; 47(11):2408-21. PubMed ID: 16926440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Urokinase-type plasminogen activator (uPA) decreases hepatic SR-BI expression and impairs HDL-mediated reverse cholesterol transport.
    Chulsky S; Paland N; Lazarovich A; Fuhrman B
    Atherosclerosis; 2014 Mar; 233(1):11-8. PubMed ID: 24529115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo.
    de Haan W; Out R; Berbée JF; van der Hoogt CC; van Dijk KW; van Berkel TJ; Romijn JA; Jukema JW; Havekes LM; Rensen PC
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1294-8. PubMed ID: 18992221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of SR-BI protein levels by phosphorylation of its associated protein, PDZK1.
    Nakamura T; Shibata N; Nishimoto-Shibata T; Feng D; Ikemoto M; Motojima K; Iso-O N; Tsukamoto K; Tsujimoto M; Arai H
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13404-9. PubMed ID: 16174736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning and endometrial expression of porcine high density lipoprotein receptor SR-BI during the estrous cycle and early pregnancy.
    Kim JG; Vallet JL; Nonneman D; Christenson RK
    Mol Cell Endocrinol; 2004 Jul; 222(1-2):105-12. PubMed ID: 15249130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice.
    Harder C; Lau P; Meng A; Whitman SC; McPherson R
    Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):858-64. PubMed ID: 17272756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels.
    Kozarsky KF; Donahee MH; Rigotti A; Iqbal SN; Edelman ER; Krieger M
    Nature; 1997 May; 387(6631):414-7. PubMed ID: 9163428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexpression of CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol metabolism.
    Komori H; Arai H; Kashima T; Huby T; Kita T; Ueda Y
    Arterioscler Thromb Vasc Biol; 2008 Jul; 28(7):1298-303. PubMed ID: 18403724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1.
    Lambert G; Chase MB; Dugi K; Bensadoun A; Brewer HB; Santamarina-Fojo S
    J Lipid Res; 1999 Jul; 40(7):1294-303. PubMed ID: 10393214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system.
    Reaven E; Leers-Sucheta S; Nomoto A; Azhar S
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1613-8. PubMed ID: 11171999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux.
    Mulcahy JV; Riddell DR; Owen JS
    Biochem J; 2004 Feb; 377(Pt 3):741-7. PubMed ID: 14570588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hepatic lipase mediates an increase in selective uptake of HDL-associated cholesteryl esters by cells in culture independent from SR-BI.
    Brundert M; Heeren J; Greten H; Rinninger F
    J Lipid Res; 2003 May; 44(5):1020-32. PubMed ID: 12611911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester.
    Matveev S; Uittenbogaard A; van Der Westhuyzen D; Smart EJ
    Eur J Biochem; 2001 Nov; 268(21):5609-16. PubMed ID: 11683884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model.
    Balazs Z; Panzenboeck U; Hammer A; Sovic A; Quehenberger O; Malle E; Sattler W
    J Neurochem; 2004 May; 89(4):939-50. PubMed ID: 15140193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.