These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15528523)
1. Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Borghese R; Borsetti F; Foladori P; Ziglio G; Zannoni D Appl Environ Microbiol; 2004 Nov; 70(11):6595-602. PubMed ID: 15528523 [TBL] [Abstract][Full Text] [Related]
2. The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32-) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. Borsetti F; Francia F; Turner RJ; Zannoni D J Bacteriol; 2007 Feb; 189(3):851-9. PubMed ID: 17098900 [TBL] [Abstract][Full Text] [Related]
3. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus. Borsetti F; Borghese R; Francia F; Randi MR; Fedi S; Zannoni D Protoplasma; 2003 May; 221(1-2):153-61. PubMed ID: 12768353 [TBL] [Abstract][Full Text] [Related]
4. The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Borghese R; Marchetti D; Zannoni D Arch Microbiol; 2008 Feb; 189(2):93-100. PubMed ID: 17713758 [TBL] [Abstract][Full Text] [Related]
5. Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP). Borghese R; Cicerano S; Zannoni D Antonie Van Leeuwenhoek; 2011 Nov; 100(4):655-8. PubMed ID: 21735076 [TBL] [Abstract][Full Text] [Related]
6. Acetate permease (ActP) Is responsible for tellurite (TeO32-) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus. Borghese R; Zannoni D Appl Environ Microbiol; 2010 Feb; 76(3):942-4. PubMed ID: 19966028 [TBL] [Abstract][Full Text] [Related]
7. Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. Borsetti F; Toninello A; Zannoni D FEBS Lett; 2003 Nov; 554(3):315-8. PubMed ID: 14623086 [TBL] [Abstract][Full Text] [Related]
8. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. Borghese R; Brucale M; Fortunato G; Lanzi M; Mezzi A; Valle F; Cavallini M; Zannoni D J Hazard Mater; 2016 May; 309():202-9. PubMed ID: 26894294 [TBL] [Abstract][Full Text] [Related]
9. Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Borsetti F; Tremaroli V; Michelacci F; Borghese R; Winterstein C; Daldal F; Zannoni D Res Microbiol; 2005 Aug; 156(7):807-13. PubMed ID: 15946826 [TBL] [Abstract][Full Text] [Related]
10. The membrane-bound respiratory chain of Pseudomonas pseudoalcaligenes KF707 cells grown in the presence or absence of potassium tellurite. Di Tomaso G; Fedi S; Carnevali M; Manegatti M; Taddei C; Zannoni D Microbiology (Reading); 2002 Jun; 148(Pt 6):1699-1708. PubMed ID: 12055290 [TBL] [Abstract][Full Text] [Related]
11. Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus. Borghese R; Malferrari M; Brucale M; Ortolani L; Franchini M; Rapino S; Borsetti F; Zannoni D Bioelectrochemistry; 2020 Jun; 133():107456. PubMed ID: 32007911 [TBL] [Abstract][Full Text] [Related]
12. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. Borghese R; Baccolini C; Francia F; Sabatino P; Turner RJ; Zannoni D J Hazard Mater; 2014 Mar; 269():24-30. PubMed ID: 24462199 [TBL] [Abstract][Full Text] [Related]
13. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ Microb Cell Fact; 2016 Dec; 15(1):204. PubMed ID: 27978836 [TBL] [Abstract][Full Text] [Related]
14. Tellurite-mediated thiol oxidation in Escherichia coli. Turner RJ; Weiner JH; Taylor DE Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2549-2557. PubMed ID: 10517608 [TBL] [Abstract][Full Text] [Related]
15. Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus". Borghese R; Brucale M; Fortunato G; Lanzi M; Mezzi A; Valle F; Cavallini M; Zannoni D J Hazard Mater; 2017 Feb; 324(Pt A):31-38. PubMed ID: 27863796 [TBL] [Abstract][Full Text] [Related]
17. [Effect of growth conditions on electrophysical properties of Rhodobacter capsulatus PG cells]. Zubova SV; Ivanov AIu; Prokhorenko IP Mikrobiologiia; 2008; 77(5):639-43. PubMed ID: 19004345 [TBL] [Abstract][Full Text] [Related]
18. On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. Borghese R; Canducci L; Musiani F; Cappelletti M; Ciurli S; Turner RJ; Zannoni D J Inorg Biochem; 2016 Oct; 163():103-109. PubMed ID: 27421695 [TBL] [Abstract][Full Text] [Related]
19. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. Moore MD; Kaplan S J Bacteriol; 1992 Mar; 174(5):1505-14. PubMed ID: 1537795 [TBL] [Abstract][Full Text] [Related]
20. Effects of tellurite on growth of Saccharomyces cerevisiae. Massardo DR; Pontieri P; Maddaluno L; De Stefano M; Alifano P; Del Giudice L Biometals; 2009 Dec; 22(6):1089-94. PubMed ID: 19760109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]