These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1552903)

  • 1. Dual function of a new nuclear gene for oxidative phosphorylation and vegetative growth in yeast.
    Lisowsky T
    Mol Gen Genet; 1992 Mar; 232(1):58-64. PubMed ID: 1552903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERV1 is involved in the cell-division cycle and the maintenance of mitochondrial genomes in Saccharomyces cerevisiae.
    Lisowsky T
    Curr Genet; 1994 Jul; 26(1):15-20. PubMed ID: 7954891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional comparison of the yeast scERV1 and scERV2 genes.
    Stein G; Lisowsky T
    Yeast; 1998 Jan; 14(2):171-80. PubMed ID: 9483805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning of the PEL1 gene of Saccharomyces cerevisiae that is essential for the viability of petite mutants.
    Janitor M; Subík J
    Curr Genet; 1993 Oct; 24(4):307-12. PubMed ID: 8252640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast.
    Lisowsky T; Weinstat-Saslow DL; Barton N; Reeders ST; Schneider MC
    Genomics; 1995 Oct; 29(3):690-7. PubMed ID: 8575761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant for the yeast scERV1 gene displays a new defect in mitochondrial morphology and distribution.
    Becher D; Kricke J; Stein G; Lisowsky T
    Yeast; 1999 Sep; 15(12):1171-81. PubMed ID: 10487920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of an intron with unique 3' branch site creates an amino-terminal protein sequence directing the scERV1 gene product to mitochondria.
    Lisowsky T
    Yeast; 1996 Dec; 12(15):1501-10. PubMed ID: 8972573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, DNA sequence and regulation of a new cell division cycle gene from the yeast Saccharomyces cerevisiae.
    Hasegawa H; Sakai A; Sugino A
    Yeast; 1989; 5(6):509-24. PubMed ID: 2694679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new essential gene GCR4 located in the upstream region of GCR1.
    Uemura H; Jigami Y
    Yeast; 1995 Sep; 11(11):1093-101. PubMed ID: 7502585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae.
    Hisamoto N; Frederick DL; Sugimoto K; Tatchell K; Matsumoto K
    Mol Cell Biol; 1995 Jul; 15(7):3767-76. PubMed ID: 7791784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and analysis of YMR26, the nuclear gene for a mitochondrial ribosomal protein in Saccharomyces cerevisiae.
    Kang W; Matsushita Y; Isono K
    Mol Gen Genet; 1991 Mar; 225(3):474-82. PubMed ID: 2017142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MGM101, a nuclear gene involved in maintenance of the mitochondrial genome in Saccharomyces cerevisiae.
    Chen XJ; Guan MX; Clark-Walker GD
    Nucleic Acids Res; 1993 Jul; 21(15):3473-7. PubMed ID: 8346025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The major 45-kDa protein of the yeast mitochondrial outer membrane is not essential for cell growth or mitochondrial function.
    Yaffe MP; Jensen RE; Guido EC
    J Biol Chem; 1989 Dec; 264(35):21091-6. PubMed ID: 2687271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae.
    Altamura N; Dujardin G; Groudinsky O; Slonimski PP
    Mol Gen Genet; 1994 Jan; 242(1):49-56. PubMed ID: 7506349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae.
    Yamamoto A; Guacci V; Koshland D
    J Cell Biol; 1996 Apr; 133(1):85-97. PubMed ID: 8601616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae.
    Radji M; Kim JM; Togan T; Yoshikawa H; Shirahige K
    Yeast; 2001 Feb; 18(3):195-205. PubMed ID: 11180453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: the alg2 mutation.
    Jackson BJ; Kukuruzinska MA; Robbins P
    Glycobiology; 1993 Aug; 3(4):357-64. PubMed ID: 8400550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of two novel ras superfamily genes in Saccharomyces cerevisiae.
    Matsui Y; Toh-e A
    Gene; 1992 May; 114(1):43-9. PubMed ID: 1587484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant.
    Ziaja K; Michaelis G; Lisowsky T
    J Mol Biol; 1993 Feb; 229(4):909-16. PubMed ID: 8445655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new nuclear suppressor system for a mitochondrial RNA polymerase mutant identifies an unusual zinc-finger protein and a polyglutamine domain protein in Saccharomyces cerevisiae.
    Bröhl S; Lisowsky T; Riemen G; Michaelis G
    Yeast; 1994 Jun; 10(6):719-31. PubMed ID: 7975891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.