These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15529878)

  • 1. Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow City, Uttar Pradesh.
    Bajpai R; Upreti DK; Mishra SK
    J Environ Biol; 2004 Apr; 25(2):191-5. PubMed ID: 15529878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities, India.
    Bajpai R; Mishra GK; Mohabe S; Upreti DK; Nayaka S
    J Environ Biol; 2011 Mar; 32(2):195-9. PubMed ID: 21882655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal accumulation in lichens growing in north side of Lucknow city, India.
    Saxena S; Upreti DK; Sharma N
    J Environ Biol; 2007 Jan; 28(1):49-51. PubMed ID: 17717985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycyclic aromatic hydrocarbons and metals in transplanted lichen (Pseudovernia furfuracea) at sites adjacent to a solid-waste landfill in central Italy.
    Protano C; Guidotti M; Owczarek M; Fantozzi L; Blasi G; Vitali M
    Arch Environ Contam Toxicol; 2014 May; 66(4):471-81. PubMed ID: 24258876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of heavy metals in some species of lichens in south Tamilnadu, India.
    Uijily ME; Kumaraguru AK
    J Environ Sci Eng; 2004 Jul; 46(3):186-93. PubMed ID: 16669308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey.
    Hanedar A
    Environ Technol; 2015; 36(20):2588-602. PubMed ID: 25854749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl.
    Bajpai R; Upreti DK; Dwivedi SK
    Environ Monit Assess; 2010 Jul; 166(1-4):477-84. PubMed ID: 19496009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomonitoring of metal deposition by using moss transplant method through Hypnum cupressiforme (Hedw.) in Mussoorie.
    Saxena DK; Srivastava K; Singh S
    J Environ Biol; 2008 Sep; 29(5):683-8. PubMed ID: 19295065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region.
    Białońska D; Dayan FE
    J Chem Ecol; 2005 Dec; 31(12):2975-91. PubMed ID: 16365718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh.
    Kumari K; Kumar V; Nayaka S; Saxena G; Sanyal I
    Environ Monit Assess; 2023 Dec; 196(1):84. PubMed ID: 38147167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lichens as bioindicators of atmospheric heavy metal pollution in Singapore.
    Ng OH; Tan BC; Obbard JP
    Environ Monit Assess; 2006 Dec; 123(1-3):63-74. PubMed ID: 17082905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification and distribution of heavy metals from small-scale industrial areas of Kanpur city, India.
    Rawat M; Ramanathan A; Subramanian V
    J Hazard Mater; 2009 Dec; 172(2-3):1145-9. PubMed ID: 19699581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies.
    Paoli L; Vannini A; Monaci F; Loppi S
    Chemosphere; 2018 May; 199():655-660. PubMed ID: 29471235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant.
    Rusu AM; Jones GC; Chimonides PD; Purvis OW
    Environ Pollut; 2006 Sep; 143(1):81-8. PubMed ID: 16368174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec.
    Aznar JC; Richer-Laflèche M; Cluis D
    Environ Pollut; 2008 Nov; 156(1):76-81. PubMed ID: 18289751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new measurement tool to consider for airborne pollutants evaluations using lichens.
    Catán SP; Bubach D; Messuti MI
    Environ Sci Pollut Res Int; 2019 May; 26(14):14689-14692. PubMed ID: 30937743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal accumulation in lichens from the Hetauda industrial area Narayani zone Makwanpur District, Nepal.
    Pandey V; Upreti DK; Pathak R; Pal A
    Environ Monit Assess; 2002 Feb; 73(3):221-8. PubMed ID: 11878631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy).
    Loppi S; Frati L; Paoli L; Bigagli V; Rossetti C; Bruscoli C; Corsini A
    Sci Total Environ; 2004 Jun; 326(1-3):113-22. PubMed ID: 15142770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India.
    Daimari R; Bhuyan P; Hussain S; Nayaka S; Mazumder MAJ; Hoque RR
    Environ Monit Assess; 2021 Jan; 193(2):101. PubMed ID: 33515080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.