BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 15530023)

  • 1. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of salt and shear on the storage and assembly of spider silk proteins.
    Eisoldt L; Hardy JG; Heim M; Scheibel TR
    J Struct Biol; 2010 May; 170(2):413-9. PubMed ID: 20045467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2008 Sep; 9(9):2399-407. PubMed ID: 18702545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.
    Hayashi CY; Lewis RV
    J Mol Biol; 1998 Feb; 275(5):773-84. PubMed ID: 9480768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus.
    Hu X; Lawrence B; Kohler K; Falick AM; Moore AM; McMullen E; Jones PR; Vierra C
    Biochemistry; 2005 Aug; 44(30):10020-7. PubMed ID: 16042378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider silk protein refolding is controlled by changing pH.
    Dicko C; Vollrath F; Kenney JM
    Biomacromolecules; 2004; 5(3):704-10. PubMed ID: 15132650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.
    Rising A; Hjälm G; Engström W; Johansson J
    Biomacromolecules; 2006 Nov; 7(11):3120-4. PubMed ID: 17096540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural conformation of spidroin in solution: a synchrotron radiation circular dichroism study.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(3):758-67. PubMed ID: 15132658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural disorder in silk proteins reveals the emergence of elastomericity.
    Dicko C; Porter D; Bond J; Kenney JM; Vollrath F
    Biomacromolecules; 2008 Jan; 9(1):216-21. PubMed ID: 18078324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions".
    Colgin MA; Lewis RV
    Protein Sci; 1998 Mar; 7(3):667-72. PubMed ID: 9541398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2.
    Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV
    Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.