These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
641 related articles for article (PubMed ID: 15530046)
1. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
2. Polymer brushes in nanopores surrounded by silicon-supported tris(trimethylsiloxy)silyl monolayers. Hoven VP; Srinanthakul M; Iwasaki Y; Iwata R; Kiatkamjornwong S J Colloid Interface Sci; 2007 Oct; 314(2):446-59. PubMed ID: 17662300 [TBL] [Abstract][Full Text] [Related]
3. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056 [TBL] [Abstract][Full Text] [Related]
4. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures. Edmondson S; Nguyen NT; Lewis AL; Armes SP Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM. Kitano K; Inoue Y; Matsuno R; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2009 Nov; 74(1):350-7. PubMed ID: 19720506 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Feng W; Zhu S; Ishihara K; Brash JL Langmuir; 2005 Jun; 21(13):5980-7. PubMed ID: 15952850 [TBL] [Abstract][Full Text] [Related]
7. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Iwata R; Satoh R; Iwasaki Y; Akiyoshi K Colloids Surf B Biointerfaces; 2008 Apr; 62(2):288-98. PubMed ID: 18055186 [TBL] [Abstract][Full Text] [Related]
8. Patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces behave as "tentacles" to capture ferritin from aqueous solution. Chen JK; Chen ZY; Lin HC; Hong PD; Chang FC ACS Appl Mater Interfaces; 2009 Jul; 1(7):1525-32. PubMed ID: 20355956 [TBL] [Abstract][Full Text] [Related]
9. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z; Chen S; Chang Y; Jiang S J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329 [TBL] [Abstract][Full Text] [Related]
10. Branched fluoropolymer-Si hybrids via surface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100) surfaces. Xu FJ; Yuan ZL; Kang ET; Neoh KG Langmuir; 2004 Sep; 20(19):8200-8. PubMed ID: 15350092 [TBL] [Abstract][Full Text] [Related]
11. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Tugulu S; Klok HA Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637 [TBL] [Abstract][Full Text] [Related]
12. Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Feng W; Brash JL; Zhu S Biomaterials; 2006 Feb; 27(6):847-55. PubMed ID: 16099496 [TBL] [Abstract][Full Text] [Related]
13. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium. Park S; Chi YS; Choi IS; Seong J; Jon S J Nanosci Nanotechnol; 2006 Nov; 6(11):3507-11. PubMed ID: 17252800 [TBL] [Abstract][Full Text] [Related]
14. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related]
15. Surface modification with well-defined biocompatible triblock copolymers Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface. Iwasaki Y; Takamiya M; Iwata R; Yusa S; Akiyoshi K Colloids Surf B Biointerfaces; 2007 Jun; 57(2):226-36. PubMed ID: 17360164 [TBL] [Abstract][Full Text] [Related]
16. Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Ma H; Li D; Sheng X; Zhao B; Chilkoti A Langmuir; 2006 Apr; 22(8):3751-6. PubMed ID: 16584252 [TBL] [Abstract][Full Text] [Related]
17. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers. Seo JH; Matsuno R; Konno T; Takai M; Ishihara K Biomaterials; 2008 Apr; 29(10):1367-76. PubMed ID: 18155763 [TBL] [Abstract][Full Text] [Related]