These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 15530053)
1. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
2. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions. Trubiano G; Borio D; Ferreira ML Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295 [TBL] [Abstract][Full Text] [Related]
3. Biodiesel production from triolein and short chain alcohols through biocatalysis. Salis A; Pinna M; Monduzzi M; Solinas V J Biotechnol; 2005 Sep; 119(3):291-9. PubMed ID: 15950307 [TBL] [Abstract][Full Text] [Related]
4. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. Ericsson DJ; Kasrayan A; Johansson P; Bergfors T; Sandström AG; Bäckvall JE; Mowbray SL J Mol Biol; 2008 Feb; 376(1):109-19. PubMed ID: 18155238 [TBL] [Abstract][Full Text] [Related]
5. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Holmquist M; Haeffner F; Norin T; Hult K Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199 [TBL] [Abstract][Full Text] [Related]
6. Dual response surface-optimized synthesis of L-menthyl conjugated linoleate in solvent-free system by Candida rugosa lipase. Li Z; Wang Y; Li J; Wang P; Wei W; Gao Y; Fu C; Dong W Bioresour Technol; 2010 Feb; 101(4):1305-9. PubMed ID: 19833506 [TBL] [Abstract][Full Text] [Related]
7. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents. Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644 [TBL] [Abstract][Full Text] [Related]
8. Two conformational states of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Cygler M Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901 [TBL] [Abstract][Full Text] [Related]
9. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute. Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil. Kahveci D; Xu X Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486 [TBL] [Abstract][Full Text] [Related]
11. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M; Haeffner F; Achour A; Norin T; Hult K Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809 [TBL] [Abstract][Full Text] [Related]
12. Esterification synthesis of ethyl oleate in solvent-free system catalyzed by lipase membrane from fermentation broth. Li WN; Chen BQ; Tan TW Appl Biochem Biotechnol; 2011 Jan; 163(1):102-11. PubMed ID: 20661784 [TBL] [Abstract][Full Text] [Related]
13. Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Martínez-Ruiz A; García HS; Saucedo-Castañeda G; Favela-Torres E Appl Biochem Biotechnol; 2008 Dec; 151(2-3):393-401. PubMed ID: 18392560 [TBL] [Abstract][Full Text] [Related]
14. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate. Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406 [TBL] [Abstract][Full Text] [Related]
15. Acidolysis of tristearin with selected long-chain fatty acids. Hamam F; Shahidi F J Agric Food Chem; 2007 Mar; 55(5):1955-60. PubMed ID: 17288439 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity of lipases in alkoxycarbonylation reaction: QSAR model development and experimental validation. Chandrasekaran SM; Bhartiya S; Wangikar PP Biotechnol Bioeng; 2006 Jun; 94(3):554-64. PubMed ID: 16528758 [TBL] [Abstract][Full Text] [Related]
17. A novel, two consecutive enzyme synthesis of feruloylated monoacyl- and diacyl-glycerols in a solvent-free system. Sun S; Shan L; Liu Y; Jin Q; Wang X; Wang Z Biotechnol Lett; 2007 Dec; 29(12):1947-50. PubMed ID: 17657410 [TBL] [Abstract][Full Text] [Related]
18. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Fernández-Lorente G; Palomo JM; Mateo C; Munilla R; Ortiz C; Cabrera Z; Guisán JM; Fernandez-Lafuente R Biomacromolecules; 2006 Sep; 7(9):2610-5. PubMed ID: 16961324 [TBL] [Abstract][Full Text] [Related]
19. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
20. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Palomo JM; Fuentes M; Fernández-Lorente G; Mateo C; Guisan JM; Fernández-Lafuente R Biomacromolecules; 2003; 4(1):1-6. PubMed ID: 12523838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]