BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 15530450)

  • 1. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation.
    Wassall SR; Brzustowicz MR; Shaikh SR; Cherezov V; Caffrey M; Stillwell W
    Chem Phys Lipids; 2004 Nov; 132(1):79-88. PubMed ID: 15530450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger for microdomain/raft formation?
    Shaikh SR; Cherezov V; Caffrey M; Stillwell W; Wassall SR
    Biochemistry; 2003 Oct; 42(41):12028-37. PubMed ID: 14556634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docosahexaenoic acid domains: the ultimate non-raft membrane domain.
    Wassall SR; Stillwell W
    Chem Phys Lipids; 2008 May; 153(1):57-63. PubMed ID: 18343224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.
    Shaikh SR; Dumaual AC; Castillo A; LoCascio D; Siddiqui RA; Stillwell W; Wassall SR
    Biophys J; 2004 Sep; 87(3):1752-66. PubMed ID: 15345554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling membrane cholesterol content. A role for polyunsaturated (docosahexaenoate) phospholipids.
    Brzustowicz MR; Cherezov V; Zerouga M; Caffrey M; Stillwell W; Wassall SR
    Biochemistry; 2002 Oct; 41(41):12509-19. PubMed ID: 12369842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation.
    Corsetto PA; Cremona A; Montorfano G; Jovenitti IE; Orsini F; Arosio P; Rizzo AM
    Cell Biochem Biophys; 2012 Sep; 64(1):45-59. PubMed ID: 22622660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane.
    Harroun TA; Katsaras J; Wassall SR
    Biochemistry; 2006 Jan; 45(4):1227-33. PubMed ID: 16430218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function.
    Raza Shaikh S
    Prostaglandins Leukot Essent Fatty Acids; 2010; 82(4-6):159-64. PubMed ID: 20207118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes.
    Wassall SR; Stillwell W
    Biochim Biophys Acta; 2009 Jan; 1788(1):24-32. PubMed ID: 19014904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR; Leng X; Canner SW; Pennington ER; Kinnun JJ; Cavazos AT; Dadoo S; Johnson D; Heberle FA; Katsaras J; Shaikh SR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1985-1993. PubMed ID: 29730243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol.
    Pitman MC; Suits F; Mackerell AD; Feller SE
    Biochemistry; 2004 Dec; 43(49):15318-28. PubMed ID: 15581344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleic- and docosahexaenoic acid-containing phosphatidylethanolamines differentially phase separate from sphingomyelin.
    Shaikh SR; Locascio DS; Soni SP; Wassall SR; Stillwell W
    Biochim Biophys Acta; 2009 Nov; 1788(11):2421-6. PubMed ID: 19735642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems.
    Shaikh SR; Kinnun JJ; Leng X; Williams JA; Wassall SR
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):211-9. PubMed ID: 24820775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-raft forming sphingomyelin-cholesterol mixtures.
    Epand RM; Epand RF
    Chem Phys Lipids; 2004 Nov; 132(1):37-46. PubMed ID: 15530446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation.
    Brzustowicz MR; Cherezov V; Caffrey M; Stillwell W; Wassall SR
    Biophys J; 2002 Jan; 82(1 Pt 1):285-98. PubMed ID: 11751316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional significance of lipid diversity: orientation of cholesterol in bilayers is determined by lipid species.
    Kucerka N; Marquardt D; Harroun TA; Nieh MP; Wassall SR; Katsaras J
    J Am Chem Soc; 2009 Nov; 131(45):16358-9. PubMed ID: 19902974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.