These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15530487)

  • 1. A computational method for inferring growth parameters and shape changes during development based on clonal analysis.
    Rolland-Lagan AG; Coen E; Impey SJ; Bangham JA
    J Theor Biol; 2005 Jan; 232(2):157-77. PubMed ID: 15530487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth dynamics underlying petal shape and asymmetry.
    Rolland-Lagan AG; Bangham JA; Coen E
    Nature; 2003 Mar; 422(6928):161-3. PubMed ID: 12634785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental biology: Flowers' wings, fruitflies' petals.
    Desplan C; Lecuit T
    Nature; 2003 Mar; 422(6928):123-4. PubMed ID: 12634762
    [No Abstract]   [Full Text] [Related]  

  • 4. Flower symmetry and shape in Antirrhinum.
    Almeida J; Galego L
    Int J Dev Biol; 2005; 49(5-6):527-37. PubMed ID: 16096962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cell and petal morphogenesis by R2R3 MYB transcription factors.
    Baumann K; Perez-Rodriguez M; Bradley D; Venail J; Bailey P; Jin H; Koes R; Roberts K; Martin C
    Development; 2007 May; 134(9):1691-701. PubMed ID: 17376813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and cellular patterns in the petal epidermis of Antirrhinum majus: empirical studies.
    Raczyńska-Szajgin M; Nakielski J
    Ann Bot; 2014 Feb; 113(3):403-16. PubMed ID: 24252282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves.
    Golz JF; Roccaro M; Kuzoff R; Hudson A
    Development; 2004 Aug; 131(15):3661-70. PubMed ID: 15229175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Yadav SR; Prasad K; Vijayraghavan U
    Genetics; 2007 May; 176(1):283-94. PubMed ID: 17409064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus.
    Delgado-Benarroch L; Weiss J; Egea-Cortines M
    J Plant Res; 2009 Sep; 122(5):559-69. PubMed ID: 19412653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanics of cell fate determination in petals.
    Martin C; Bhatt K; Baumann K; Jin H; Zachgo S; Roberts K; Schwarz-Sommer Z; Glover B; Perez-Rodrigues M
    Philos Trans R Soc Lond B Biol Sci; 2002 Jun; 357(1422):809-13. PubMed ID: 12079676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis petal: a model for plant organogenesis.
    Irish VF
    Trends Plant Sci; 2008 Aug; 13(8):430-6. PubMed ID: 18603466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FORMOSA controls cell division and expansion during floral development in Antirrhinum majus.
    Delgado-Benarroch L; Causier B; Weiss J; Egea-Cortines M
    Planta; 2009 May; 229(6):1219-29. PubMed ID: 19271234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for cytoplasmic inheritance of a developmental organizer affecting growth habit and leaf shape in Antirrhinum majus.
    Bergbusch VL
    Heredity (Edinb); 2002 Jul; 89(1):44-55. PubMed ID: 12080369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers.
    Perez-Rodriguez M; Jaffe FW; Butelli E; Glover BJ; Martin C
    Development; 2005 Jan; 132(2):359-70. PubMed ID: 15604096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of shape complexity through tissue conflict resolution.
    Rebocho AB; Southam P; Kennaway JR; Bangham JA; Coen E
    Elife; 2017 Feb; 6():. PubMed ID: 28166865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning the female side of Arabidopsis: the importance of hormones.
    Balanzá V; Navarrete M; Trigueros M; Ferrándiz C
    J Exp Bot; 2006; 57(13):3457-69. PubMed ID: 17023565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic basis for innovations in floral organ identity.
    Kramer EM; Jaramillo MA
    J Exp Zool B Mol Dev Evol; 2005 Nov; 304(6):526-35. PubMed ID: 15880769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth.
    Jaffé FW; Tattersall A; Glover BJ
    J Exp Bot; 2007; 58(6):1515-24. PubMed ID: 17347131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.