These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 15530981)

  • 61. Ultrasound transducers.
    Rizzatto G
    Eur J Radiol; 1998 May; 27 Suppl 2():S188-95. PubMed ID: 9652521
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of transmit focusing on finite amplitude distortion based second harmonic generation.
    Li PC; Shen CC
    Ultrason Imaging; 1999 Oct; 21(4):243-58. PubMed ID: 10801210
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient array design for sonotherapy.
    Stephens DN; Kruse DE; Ergun AS; Barnes S; Lu XM; Ferrara KW
    Phys Med Biol; 2008 Jul; 53(14):3943-69. PubMed ID: 18591737
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multiple-frequency ultrasonic imaging by transmitting pulsed waves of two frequencies.
    Yoshizumi N; Saito S; Koyama D; Nakamura K; Ohya A; Akiyama I
    J Med Ultrason (2001); 2009 Jun; 36(2):53-60. PubMed ID: 27277084
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lower receiving frequencies than transmitting frequencies could yield improved results for contrast imaging: an in vivo study in closed chest canines.
    Rusk RA; Mori Y; Li X; Mao Z; von Behren PL; Paine D; Kenny A; Sahn DJ
    Echocardiography; 2003 Apr; 20(3):257-64. PubMed ID: 12848663
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Piezo-polymer transducers for ultrasonic imaging in air.
    Capineri L; Fiorillo AS; Masotti L; Rocchi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):36-43. PubMed ID: 18244099
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Double frequency piezoelectric transducer design for harmonic imaging purposes in NDT.
    Montero de Espinosa F; Martínez O; Elvira Segura L; Gómez-Ullate L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):980-6. PubMed ID: 16118979
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing.
    Demi L; Ramalli A; Giannini G; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):230-5. PubMed ID: 25585405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and In Vivo Characterization.
    Newsome IG; Kierski TM; Pang G; Yin J; Yang J; Cherin E; Foster FS; Carnevale CA; Demore CEM; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2657-2666. PubMed ID: 33872146
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Array redundancy for active line arrays.
    Hoctor RT; Kassam SA
    IEEE Trans Image Process; 1996; 5(7):1179-83. PubMed ID: 18285205
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spectral Doppler Measurements With 2-D Sparse Arrays.
    Mattesini P; Ramalli A; Petrusca L; Basset O; Liebgott H; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):278-285. PubMed ID: 31562082
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The design, fabrication, and measured acoustic performance of a 1-3 piezoelectric composite Navy calibration standard transducer.
    Benjamin KC; Petrie S
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1973-8. PubMed ID: 11386551
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multi-line transmission in 3-D with reduced crosstalk artifacts: a proof of concept study.
    Denarie B; Bjåstad T; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1708-18. PubMed ID: 25004541
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interferometric spectrum analyzer.
    Lugt AV
    Appl Opt; 1981 Aug; 20(16):2770-9. PubMed ID: 20333039
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and construction of a low frequency wide band non-resonant transducer.
    Allin JM; Cawley P
    Ultrasonics; 2003 May; 41(3):147-55. PubMed ID: 12726935
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Selection of a Potting Material and Method for Broadband Underwater Cymbal Arrays.
    Wang W; Shim H; Roh Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366020
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Time Modulated Arrays: From their Origin to Their Utilization in Wireless Communication Systems.
    Maneiro-Catoira R; Brégains J; García-Naya JA; Castedo L
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335415
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Superharmonic Imaging for Medical Ultrasound: a Review.
    Londhe ND; Suri JS
    J Med Syst; 2016 Dec; 40(12):279. PubMed ID: 27787782
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Modern ultrasound diagnostics of deep vein thrombosis in lung embolism of unknown origin].
    Clevert DA; Jung EM; Pfister K; Stock K; Schulte-Altedorneburg G; Fink C; Clevert DA; Reiser M
    Radiologe; 2007 Aug; 47(8):673-84. PubMed ID: 17634909
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging.
    Forsberg F; Shi WT; Jadidian B; Winder AA
    Ultrasonics; 2004 Dec; 43(2):79-85. PubMed ID: 15530981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.