BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15531586)

  • 1. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S; Galardy PJ; Meester WJ; Ovaa H; Ploegh HL; Gaudet R
    J Biol Chem; 2005 Jan; 280(2):1512-20. PubMed ID: 15531586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.
    Johnston SC; Larsen CN; Cook WJ; Wilkinson KD; Hill CP
    EMBO J; 1997 Jul; 16(13):3787-96. PubMed ID: 9233788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
    Rajesh S; Sakamoto T; Iwamoto-Sugai M; Shibata T; Kohno T; Ito Y
    Biochemistry; 1999 Jul; 38(29):9242-53. PubMed ID: 10413498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the specificity of ubiquitin C-terminal hydrolases.
    Johnston SC; Riddle SM; Cohen RE; Hill CP
    EMBO J; 1999 Jul; 18(14):3877-87. PubMed ID: 10406793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding site for UCH-L3 on ubiquitin: mutagenesis and NMR studies on the complex between ubiquitin and UCH-L3.
    Wilkinson KD; Laleli-Sahin E; Urbauer J; Larsen CN; Shih GH; Haas AL; Walsh ST; Wand AJ
    J Mol Biol; 1999 Sep; 291(5):1067-77. PubMed ID: 10518943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain.
    Nishio K; Kim SW; Kawai K; Mizushima T; Yamane T; Hamazaki J; Murata S; Tanaka K; Morimoto Y
    Biochem Biophys Res Commun; 2009 Dec; 390(3):855-60. PubMed ID: 19836345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1.
    Das C; Hoang QQ; Kreinbring CA; Luchansky SJ; Meray RK; Ray SS; Lansbury PT; Ringe D; Petsko GA
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4675-80. PubMed ID: 16537382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies of ubiquitin C-terminal hydrolase L1.
    Case A; Stein RL
    Biochemistry; 2006 Feb; 45(7):2443-52. PubMed ID: 16475834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate recognition and catalysis by UCH-L1.
    Luchansky SJ; Lansbury PT; Stein RL
    Biochemistry; 2006 Dec; 45(49):14717-25. PubMed ID: 17144664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing substrate selectivity of ubiquitin C-terminal hydrolase-L3 using engineered α-linked ubiquitin substrates.
    Navarro MF; Carmody L; Romo-Fewell O; Lokensgard ME; Love JJ
    Biochemistry; 2014 Dec; 53(51):8031-42. PubMed ID: 25369561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of the C-terminus of NEDD8 by UCH-L3.
    Wada H; Kito K; Caskey LS; Yeh ET; Kamitani T
    Biochem Biophys Res Commun; 1998 Oct; 251(3):688-92. PubMed ID: 9790970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors.
    Mermerian AH; Case A; Stein RL; Cuny GD
    Bioorg Med Chem Lett; 2007 Jul; 17(13):3729-32. PubMed ID: 17449248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.
    Bett JS; Ritorto MS; Ewan R; Jaffray EG; Virdee S; Chin JW; Knebel A; Kurz T; Trost M; Tatham MH; Hay RT
    Biochem J; 2015 Mar; 466(3):489-98. PubMed ID: 25489924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation.
    Boudreaux DA; Maiti TK; Davies CW; Das C
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9117-22. PubMed ID: 20439756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G.
    Sahtoe DD; van Dijk WJ; El Oualid F; Ekkebus R; Ovaa H; Sixma TK
    Mol Cell; 2015 Mar; 57(5):887-900. PubMed ID: 25702870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK).
    Davies CW; Chaney J; Korbel G; Ringe D; Petsko GA; Ploegh H; Das C
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3900-4. PubMed ID: 22617491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a novel chemical potentiator and inhibitors of UCH-L1 by in silico drug screening.
    Mitsui T; Hirayama K; Aoki S; Nishikawa K; Uchida K; Matsumoto T; Kabuta T; Wada K
    Neurochem Int; 2010 Apr; 56(5):679-86. PubMed ID: 20144674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin dimers control the hydrolase activity of UCH-L3.
    Setsuie R; Sakurai M; Sakaguchi Y; Wada K
    Neurochem Int; 2009; 54(5-6):314-21. PubMed ID: 19154770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.