BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15531623)

  • 1. Cerebral haemodynamics in patients with chronic renal failure: effects of haemodialysis.
    Skinner H; Mackaness C; Bedforth N; Mahajan R
    Br J Anaesth; 2005 Feb; 94(2):203-5. PubMed ID: 15531623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral haemodynamics in pregnancy and pre-eclampsia as assessed by transcranial Doppler ultrasonography.
    Sherman RW; Bowie RA; Henfrey MM; Mahajan RP; Bogod D
    Br J Anaesth; 2002 Nov; 89(5):687-92. PubMed ID: 12393763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of magnesium sulphate on cerebral haemodynamics in healthy volunteers: a transcranial Doppler study.
    Sherman R; Armory P; Moody P; Hope T; Mahajan RP
    Br J Anaesth; 2003 Aug; 91(2):273-5. PubMed ID: 12878627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
    Lee JH; Kelly DF; Oertel M; McArthur DL; Glenn TC; Vespa P; Boscardin WJ; Martin NA
    J Neurosurg; 2001 Aug; 95(2):222-32. PubMed ID: 11780891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of target-controlled infusion of propofol on the transient hyperaemic response and carbon dioxide reactivity in the middle cerebral artery.
    Harrison JM; Girling KJ; Mahajan RP
    Br J Anaesth; 1999 Dec; 83(6):839-44. PubMed ID: 10700779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ephedrine, dobutamine and dopexamine on cerebral haemodynamics: transcranial Doppler studies in healthy volunteers.
    Moppett IK; Wild MJ; Sherman RW; Latter JA; Miller K; Mahajan RP
    Br J Anaesth; 2004 Jan; 92(1):39-44. PubMed ID: 14665551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI.
    Verbree J; Bronzwaer AS; Ghariq E; Versluis MJ; Daemen MJ; van Buchem MA; Dahan A; van Lieshout JJ; van Osch MJ
    J Appl Physiol (1985); 2014 Nov; 117(10):1084-9. PubMed ID: 25190741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow decreases during intermittent hemodialysis in patients with acute kidney injury, but not in patients with end-stage renal disease.
    Regolisti G; Maggiore U; Cademartiri C; Cabassi A; Caiazza A; Tedeschi S; Antonucci E; Fiaccadori E
    Nephrol Dial Transplant; 2013 Jan; 28(1):79-85. PubMed ID: 22711517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of cerebral autoregulation using carotid artery compression.
    Smielewski P; Czosnyka M; Kirkpatrick P; McEroy H; Rutkowska H; Pickard JD
    Stroke; 1996 Dec; 27(12):2197-203. PubMed ID: 8969780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulatory response and CO2 reactivity of the basilar artery.
    Park CW; Sturzenegger M; Douville CM; Aaslid R; Newell DW
    Stroke; 2003 Jan; 34(1):34-9. PubMed ID: 12511747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial Doppler ultrasonographic evaluation of middle cerebral artery hemodynamics during mild hypothermia.
    Mahmood MA; Voorhees ME; Parnell M; Zweifler RM
    J Neuroimaging; 2005 Oct; 15(4):336-40. PubMed ID: 16254398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hypertension on cerebrovascular carbon dioxide reactivity in atrial fibrillation patients.
    Walsh HJ; Junejo RT; Lip GYH; Fisher JP
    Hypertens Res; 2024 Jun; 47(6):1678-1687. PubMed ID: 38600276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies.
    Matta BF; Stow PJ
    Br J Anaesth; 1996 Jun; 76(6):790-4. PubMed ID: 8679351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrovascular CO
    Ishida K; Uchida M; Utada K; Yamashita A; Yamashita S; Fukuda S; Matsumoto M; Sakabe T
    J Anesth; 2018 Feb; 32(1):15-22. PubMed ID: 29103148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous cerebral autoregulation monitoring by cross-correlation analysis.
    Steinmeier R; Hofmann RP; Bauhuf C; Hübner U; Fahlbusch R
    J Neurotrauma; 2002 Oct; 19(10):1127-38. PubMed ID: 12427323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of GV20 acupuncture on cerebral blood flow velocity of middle cerebral artery and anterior cerebral artery territories, and CO2 reactivity during hypocapnia in normal subjects.
    Byeon HS; Moon SK; Park SU; Jung WS; Park JM; Ko CN; Cho KH; Kim YS; Bae HS
    J Altern Complement Med; 2011 Mar; 17(3):219-24. PubMed ID: 21417808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2.
    Immink RV; Secher NH; Roos CM; Pott F; Madsen PL; van Lieshout JJ
    Eur J Appl Physiol; 2006 Mar; 96(5):609-14. PubMed ID: 16470413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired dynamic cerebral autoregulation in middle cerebral artery stenosis.
    Gong XP; Li Y; Jiang WJ; Wang Y
    Neurol Res; 2006 Jan; 28(1):76-81. PubMed ID: 16464367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes.
    Kim YS; Immink RV; Stok WJ; Karemaker JM; Secher NH; van Lieshout JJ
    Clin Sci (Lond); 2008 Oct; 115(8):255-62. PubMed ID: 18348713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.