These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15532719)

  • 1. Altered Mg2+ transport across liver plasma membrane from streptozotocin-treated rats.
    Cefaratti C; McKinnis A; Romani A
    Mol Cell Biochem; 2004 Jul; 262(1-2):145-54. PubMed ID: 15532719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravesicular glucose modulates magnesium2+ transport in liver plasma membrane from streptozotocin-treated rats.
    Cefaratti C; Romani A
    Metabolism; 2003 Nov; 52(11):1464-70. PubMed ID: 14624408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells.
    Fagan TE; Cefaratti C; Romani A
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E184-93. PubMed ID: 14701664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethanol administration on Mg2+ transport across liver plasma membrane.
    Cefaratti C; Young A; Romani A
    Alcohol; 2005 May; 36(1):5-18. PubMed ID: 16257349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver.
    Cefaratti C; Romani A; Scarpa A
    Am J Physiol; 1998 Oct; 275(4):C995-C1008. PubMed ID: 9755053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg2+ release coupled to Ca2+ uptake: a novel Ca 2+ accumulation mechanism in rat liver.
    Cefaratti C
    Mol Cell Biochem; 2007 Jan; 295(1-2):241-7. PubMed ID: 16845488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles.
    Cefaratti C; Romani AM
    Mol Cell Biochem; 2007 Sep; 303(1-2):63-72. PubMed ID: 17415622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormonal stimulation of Mg2+ uptake in hepatocytes. Regulation by plasma membrane and intracellular organelles.
    Romani A; Marfella C; Scarpa A
    J Biol Chem; 1993 Jul; 268(21):15489-95. PubMed ID: 8340377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of altered vesicle transport in redistribution of Ca2+, Mg2+-ATPase in cholestatic rat liver.
    Song JY; Van Noorden CJ; Frederiks WM
    Histochem J; 1998 Dec; 30(12):909-16. PubMed ID: 10100733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+)-Ca2+ antiporter activity of rat hepatocytes. Effect of adrenalectomy on Ca2+ uptake and release from plasma membrane vesicles.
    Studer RK; Borle AB
    Biochim Biophys Acta; 1992 Feb; 1134(1):7-16. PubMed ID: 1543758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes.
    Blitzer BL; Hostetler BR; Scott KA
    J Clin Invest; 1989 Apr; 83(4):1319-25. PubMed ID: 2703534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Na+/alanine cotransport in liver sinusoidal membrane vesicles by internal divalent cations.
    Simmons TW; Moseley RH; Boyer JL; Ballatori N
    Biochim Biophys Acta; 1990 Apr; 1023(3):462-8. PubMed ID: 2110482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Na+/Mg²+ exchanger stoichiometry ratio by Cl⁻ ions in basolateral rat liver plasma membrane vesicles.
    Cefaratti C; Romani A
    Mol Cell Biochem; 2011 May; 351(1-2):133-42. PubMed ID: 21234652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glutamine transport by liver plasma membrane vesicles.
    Jacob R; Rosenthal N; Barrett EJ
    Am J Physiol; 1986 Nov; 251(5 Pt 1):E509-14. PubMed ID: 3777161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatobiliary excretion of bile acids and rose bengal in streptozotocin-induced and genetic diabetic rats.
    Stone JL; Braunstein JB; Beaty TM; Sanders RA; Watkins JB
    J Pharmacol Exp Ther; 1997 Apr; 281(1):412-9. PubMed ID: 9103524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats.
    Makino N; Dhalla KS; Elimban V; Dhalla NS
    Am J Physiol; 1987 Aug; 253(2 Pt 1):E202-7. PubMed ID: 2956889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart.
    Schaffer SW; Ballard-Croft C; Boerth S; Allo SN
    Cardiovasc Res; 1997 Apr; 34(1):129-36. PubMed ID: 9217882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of insulin impairs Mg2+ homeostasis and transport in cardiac cells of streptozotocin-injected diabetic rats.
    Reed G; Cefaratti C; Berti-Mattera LN; Romani A
    J Cell Biochem; 2008 Jun; 104(3):1034-53. PubMed ID: 18247326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of L-glutamine and L-glutamate across sinusoidal membranes of rat liver. Effects of starvation, diabetes and corticosteroid treatment.
    Low SY; Taylor PM; Hundal HS; Pogson CI; Rennie MJ
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):333-40. PubMed ID: 1350902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential localization and operation of distinct Mg(2+) transporters in apical and basolateral sides of rat liver plasma membrane.
    Cefaratti C; Romani A; Scarpa A
    J Biol Chem; 2000 Feb; 275(6):3772-80. PubMed ID: 10660526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.