BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15532994)

  • 1. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.
    Wang FC; Liu F; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):283-91. PubMed ID: 15532994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of elastohydrodynamic lubrication in McKee-Farrar metal-on-metal hip joint replacement.
    Yew A; Udofia I; Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):27-34. PubMed ID: 14982343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing.
    Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P
    Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastohydrodynamic lubrication analysis of a functionally graded layered bearing surface, with particular reference to 'cushion form bearings' for artificial knee joints.
    Virdee SS; Wang FC; Xu H; Jin ZM
    Proc Inst Mech Eng H; 2003; 217(3):191-8. PubMed ID: 12807159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastohydrodynamic lubrication analysis of metal-on-metal hip-resurfacing prostheses.
    Udofia IJ; Jin ZM
    J Biomech; 2003 Apr; 36(4):537-44. PubMed ID: 12600344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady state entraining motion.
    Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2001; 215(6):531-41. PubMed ID: 11848385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    J Biomech; 2006; 39(5):905-14. PubMed ID: 16199048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastohydrodynamic lubrication analysis of ultra-high molecular weight polyethylene hip joint replacements under squeeze-film motion.
    Jagatia M; Jalali-Vahid D; Jin ZM
    Proc Inst Mech Eng H; 2001; 215(2):141-52. PubMed ID: 11382073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design aspects of compliant, soft layer bearings for an experimental hip prosthesis.
    Scholes SC; Unsworth A; Blamey JM; Burgess IC; Jones E; Smith N
    Proc Inst Mech Eng H; 2005; 219(2):79-87. PubMed ID: 15819479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses.
    Liu F; Jin Z; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2006 Aug; 220(6):695-704. PubMed ID: 16961189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2005 Sep; 219(5):319-28. PubMed ID: 16225148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint.
    Scholes SC; Burgess IC; Marsden HR; Unsworth A; Jones E; Smith N
    Proc Inst Mech Eng H; 2006 Jul; 220(5):583-96. PubMed ID: 16898216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D-transient elastohydrodynamic lubrication hip implant model to compare ultra high molecular weight polyethylene with more compliant polycarbonate polyurethane acetabular cups.
    Ford A; Hua Z; Ferguson SJ; Pruitt LA; Gao L
    J Mech Behav Biomed Mater; 2021 Jul; 119():104472. PubMed ID: 33813334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of elastohydrodynamic lubrication in a novel metal-on-metal hip joint replacement.
    Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2002; 216(3):185-93. PubMed ID: 12137285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of lubricating film thickness in UHMWPE hip joint replacements.
    Jalali-Vahid D; Jagatia M; Jin ZM; Dowson D
    J Biomech; 2001 Feb; 34(2):261-6. PubMed ID: 11165292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appropriate radial clearance of ceramic-on-ceramic total hip prostheses to realize squeeze-film lubrication.
    Mabuchi K; Sakai R; Ota M; Ujihira M
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):362-9. PubMed ID: 15109756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction and lubrication in cushion form bearings for artificial hip joints.
    Auger DD; Dowson D; Fisher J; Jin ZM
    Proc Inst Mech Eng H; 1993; 207(1):25-33. PubMed ID: 8363695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliant layer bearings in artificial joints. Part 2: simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate.
    Jones E; Scholes SC; Burgess IC; Ash HE; Unsworth A
    Proc Inst Mech Eng H; 2009 Jan; 223(1):1-12. PubMed ID: 19239063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.