BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15532996)

  • 1. Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation.
    Weir NA; Buchanan FJ; Orr JF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):307-19. PubMed ID: 15532996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A degradation study of PLLA containing lauric acid.
    Renouf-Glauser AC; Rose J; Farrar D; Cameron RE
    Biomaterials; 2005 May; 26(15):2415-22. PubMed ID: 15585245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological evaluation of hydroxyapatite/poly-L-lactide (HAp/PLLA) composite biomaterials with poly-L-lactide of different molecular weights intraperitoneally implanted into mice.
    Najman S; Savic V; Djordjevic Lj; Ignjatovic N; Uskokovic D
    Biomed Mater Eng; 2004; 14(1):61-70. PubMed ID: 14757954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile.
    Malberg S; Hoglund A; Albertsson AC
    Biomacromolecules; 2011 Jun; 12(6):2382-8. PubMed ID: 21528876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation.
    Lips PA; van Luyn MJ; Chiellini F; Brouwer LA; Velthoen IW; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2006 Mar; 76(4):699-710. PubMed ID: 16315190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes.
    Knight PT; Kirk JT; Anderson JM; Mather PT
    J Biomed Mater Res A; 2010 Aug; 94(2):333-43. PubMed ID: 20583334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study.
    Mäkelä P; Pohjonen T; Törmälä P; Waris T; Ashammakhi N
    Biomaterials; 2002 Jun; 23(12):2587-92. PubMed ID: 12033607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro properties of PLLA screws and novel bioabsorbable implant with elastic nucleus to replace intervertebral disc.
    Ellä V; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2005 Jul; 16(7):655-62. PubMed ID: 15965598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.