BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15532996)

  • 21. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study.
    Pihlajamäki H; Böstman O; Tynninen O; Laitinen O
    Bone; 2006 Oct; 39(4):932-7. PubMed ID: 16750438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation.
    Leenslag JW; Pennings AJ; Bos RR; Rozema FR; Boering G
    Biomaterials; 1987 Jul; 8(4):311-4. PubMed ID: 3663810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of gamma, ethylene oxide, electron beam, and plasma sterilization on the behaviour of SR-PLLA fibres in vitro.
    Nuutinen JP; Clerc C; Virta T; Törmälä P
    J Biomater Sci Polym Ed; 2002; 13(12):1325-36. PubMed ID: 12555899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro and in vivo degradation behavior and the long-term performance of biodegradable PLCL balloon implants.
    Haim Zada M; Kumar A; Elmalak O; Markovitz E; Icekson R; Domb AJ
    Int J Pharm; 2020 Jan; 574():118870. PubMed ID: 31765780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly L-lactide screws.
    Handolin L; Pohjonen T; Partio EK; Arnala I; Törmälä P; Rokkanen P
    Biomaterials; 2002 Jul; 23(13):2733-6. PubMed ID: 12059023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization.
    Grabow N; Schlun M; Sternberg K; Hakansson N; Kramer S; Schmitz KP
    J Biomech Eng; 2005 Feb; 127(1):25-31. PubMed ID: 15868785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment.
    Imai Y; Nagai M; Watanabe M
    J Biomater Sci Polym Ed; 1999; 10(4):421-32. PubMed ID: 10227465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):665-76. PubMed ID: 12903735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sterilization and strength of 70/30 polylactide cages: e-beam versus ethylene oxide.
    Smit TH; Thomas KA; Hoogendoorn RJ; Strijkers GJ; Helder MN; Wuisman PI
    Spine (Phila Pa 1976); 2007 Apr; 32(7):742-7. PubMed ID: 17414907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods.
    Matsusue Y; Yamamuro T; Oka M; Shikinami Y; Hyon SH; Ikada Y
    J Biomed Mater Res; 1992 Dec; 26(12):1553-67. PubMed ID: 1484062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradable polydioxanone and poly(l/d)lactide implants: an experimental study on peri-implant tissue response.
    Kontio R; Ruuttila P; Lindroos L; Suuronen R; Salo A; Lindqvist C; Virtanen I; Konttinen YT
    Int J Oral Maxillofac Surg; 2005 Oct; 34(7):766-76. PubMed ID: 15979853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo implantation of 2,2'-bis(oxazoline)-linked poly-epsilon-caprolactone: proof for enzyme sensitive surface erosion and biocompatibility.
    Pulkkinen M; Malin M; Böhm J; Tarvainen T; Wirth T; Seppälä J; Järvinen K
    Eur J Pharm Sci; 2009 Feb; 36(2-3):310-9. PubMed ID: 19022379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro.
    Kellomäki M; Paasimaa S; Törmälä P
    Proc Inst Mech Eng H; 2000; 214(6):615-29. PubMed ID: 11201409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide).
    Tsuji H; Sawada M; Bouapao L
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone).
    Cho H; An J
    Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.