BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15533037)

  • 1. Assignment of endogenous substrates to enzymes by global metabolite profiling.
    Saghatelian A; Trauger SA; Want EJ; Hawkins EG; Siuzdak G; Cravatt BF
    Biochemistry; 2004 Nov; 43(45):14332-9. PubMed ID: 15533037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.
    Saghatelian A; Cravatt BF
    Life Sci; 2005 Aug; 77(14):1759-66. PubMed ID: 15964030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids.
    McKinney MK; Cravatt BF
    Biochemistry; 2006 Aug; 45(30):9016-22. PubMed ID: 16866346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase.
    Patricelli MP; Cravatt BF
    Biochemistry; 2001 May; 40(20):6107-15. PubMed ID: 11352748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of fatty acid amide hydrolase.
    McKinney MK; Cravatt BF
    Annu Rev Biochem; 2005; 74():411-32. PubMed ID: 15952893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels.
    Saghatelian A; McKinney MK; Bandell M; Patapoutian A; Cravatt BF
    Biochemistry; 2006 Aug; 45(30):9007-15. PubMed ID: 16866345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional disassociation of the central and peripheral fatty acid amide signaling systems.
    Cravatt BF; Saghatelian A; Hawkins EG; Clement AB; Bracey MH; Lichtman AH
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10821-6. PubMed ID: 15247426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of fatty acid amide hydrolase activity in plants.
    Kim SC; Faure L; Chapman KD
    Methods Mol Biol; 2013; 1009():115-27. PubMed ID: 23681529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable isotope liquid chromatography-tandem mass spectrometry assay for fatty acid amide hydrolase activity.
    Rakers C; Zoerner AA; Engeli S; Batkai S; Jordan J; Tsikas D
    Anal Biochem; 2012 Feb; 421(2):699-705. PubMed ID: 22146559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of prostaglandin glycerol esters by the endocannabinoid-hydrolyzing enzymes, monoacylglycerol lipase and fatty acid amide hydrolase.
    Vila A; Rosengarth A; Piomelli D; Cravatt B; Marnett LJ
    Biochemistry; 2007 Aug; 46(33):9578-85. PubMed ID: 17649977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and application of an LC-MS/MS method for quantitation of three fatty acid ethanolamides as biomarkers for fatty acid hydrolase inhibition in human plasma.
    Jian W; Edom R; Weng N; Zannikos P; Zhang Z; Wang H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1687-99. PubMed ID: 20462810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid amide hydrolase substrate specificity.
    Boger DL; Fecik RA; Patterson JE; Miyauchi H; Patricelli MP; Cravatt BF
    Bioorg Med Chem Lett; 2000 Dec; 10(23):2613-6. PubMed ID: 11128635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracosahexaenoylethanolamide, a novel
    Lin L; Metherel AH; Di Miceli M; Liu Z; Sahin C; Fioramonti X; Cummins CL; Layé S; Bazinet RP
    J Lipid Res; 2020 Nov; 61(11):1480-1490. PubMed ID: 32826272
    [No Abstract]   [Full Text] [Related]  

  • 14. A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain.
    Egertová M; Giang DK; Cravatt BF; Elphick MR
    Proc Biol Sci; 1998 Nov; 265(1410):2081-5. PubMed ID: 9842734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taurine-Conjugated Metabolites in Hearts.
    Ito T; Murakami S; Schaffer SW
    Adv Exp Med Biol; 2019; 1155():523-529. PubMed ID: 31468428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase.
    Hayes AC; Stupak J; Li J; Cox AD
    J Lipid Res; 2013 Feb; 54(2):457-66. PubMed ID: 23187822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid chromatography high-resolution mass spectrometry for fatty acid profiling.
    Bromke MA; Hochmuth A; Tohge T; Fernie AR; Giavalisco P; Burgos A; Willmitzer L; Brotman Y
    Plant J; 2015 Feb; 81(3):529-36. PubMed ID: 25440443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of endocannabinoids in alcohol consumption and intoxication: studies of mice lacking fatty acid amide hydrolase.
    Blednov YA; Cravatt BF; Boehm SL; Walker D; Harris RA
    Neuropsychopharmacology; 2007 Jul; 32(7):1570-82. PubMed ID: 17164820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry-based metabolomics to identify taurine-modified metabolites in heart.
    Ito T; Okazaki K; Nakajima D; Shibata D; Murakami S; Schaffer S
    Amino Acids; 2018 Jan; 50(1):117-124. PubMed ID: 29019072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.
    Mofford DM; Adams ST; Reddy GS; Reddy GR; Miller SC
    J Am Chem Soc; 2015 Jul; 137(27):8684-7. PubMed ID: 26120870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.