BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 15533310)

  • 1. Anesthetized Long Evans rats show similar protein expression and long-term potentiation as Fischer 344 rats but reduced short-term potentiation in motor cortex.
    Wawryko P; Ward NL; Whishaw IQ; Ivanco TL
    Brain Res; 2004 Dec; 1029(1):1-10. PubMed ID: 15533310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation.
    Monfils MH; Teskey GC
    Neuroscience; 2004; 125(2):329-36. PubMed ID: 15062976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-induced and electrically induced potentiation in the neocortex.
    Hodgson RA; Ji Z; Standish S; Boyd-Hodgson TE; Henderson AK; Racine RJ
    Neurobiol Learn Mem; 2005 Jan; 83(1):22-32. PubMed ID: 15607685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for altered Fragile-X mental retardation protein expression in response to behavioral stimulation.
    Irwin SA; Swain RA; Christmon CA; Chakravarti A; Weiler IJ; Greenough WT
    Neurobiol Learn Mem; 2000 Jan; 73(1):87-93. PubMed ID: 10686126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning.
    Frantseva MV; Fitzgerald PB; Chen R; Möller B; Daigle M; Daskalakis ZJ
    Cereb Cortex; 2008 May; 18(5):990-6. PubMed ID: 17855721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decline of long-term potentiation (LTP) in the rat auditory cortex in vivo during postnatal life: involvement of NR2B subunits.
    Hogsden JL; Dringenberg HC
    Brain Res; 2009 Aug; 1283():25-33. PubMed ID: 19520065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for altered Fragile-X mental retardation protein expression in response to behavioral stimulation.
    Irwin SA; Swain RA; Christmon CA; Chakravarti A; Weiler IJ; Greenough WT
    Neurobiol Learn Mem; 2000 Jul; 74(1):87-93. PubMed ID: 11001622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skilled motor learning does not enhance long-term depression in the motor cortex in vivo.
    Cohen JD; Castro-Alamancos MA
    J Neurophysiol; 2005 Mar; 93(3):1486-97. PubMed ID: 15525804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training.
    Stefan K; Wycislo M; Gentner R; Schramm A; Naumann M; Reiners K; Classen J
    Cereb Cortex; 2006 Mar; 16(3):376-85. PubMed ID: 15930370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminar differences in field potential morphology and long-term potentiation in motor cortex coronal slices from both unstimulated and previously potentiated rats.
    Ji Z; Boyd TE; Froc DJ; Racine RJ
    Eur J Neurosci; 2005 Sep; 22(6):1455-62. PubMed ID: 16190899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis.
    Irwin SA; Christmon CA; Grossman AW; Galvez R; Kim SH; DeGrush BJ; Weiler IJ; Greenough WT
    Neurobiol Learn Mem; 2005 May; 83(3):180-7. PubMed ID: 15820853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between LTP- and LTD-inducing stimulation in the sensorimotor cortex of the awake freely moving rat.
    Froc DJ; Racine RJ
    J Neurophysiol; 2005 Jan; 93(1):548-56. PubMed ID: 15356176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengthening of horizontal cortical connections following skill learning.
    Rioult-Pedotti MS; Friedman D; Hess G; Donoghue JP
    Nat Neurosci; 1998 Jul; 1(3):230-4. PubMed ID: 10195148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency.
    Sui L; Anderson WL; Gilbert ME
    Toxicol Sci; 2005 May; 85(1):647-56. PubMed ID: 15673845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficits in cortico-striatal synaptic plasticity and behavioral habituation in rats with portacaval anastomosis.
    Sergeeva OA; Schulz D; Doreulee N; Ponomarenko AA; Selbach O; Borsch E; Kircheis G; Huston JP; Häussinger D; Haas HL
    Neuroscience; 2005; 134(4):1091-8. PubMed ID: 16039790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic differences in hippocampal synaptic plasticity.
    Prakash S; Ambrosio E; Alguacil LF; Del Olmo N
    Neuroscience; 2009 Jun; 161(2):342-6. PubMed ID: 19336250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of the synaptic modification range.
    Rioult-Pedotti MS; Donoghue JP; Dunaevsky A
    J Neurophysiol; 2007 Dec; 98(6):3688-95. PubMed ID: 17913995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine.
    Dringenberg HC; Hamze B; Wilson A; Speechley W; Kuo MC
    Cereb Cortex; 2007 Apr; 17(4):839-48. PubMed ID: 16707735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex.
    Monfils MH; VandenBerg PM; Kleim JA; Teskey GC
    Cereb Cortex; 2004 May; 14(5):586-93. PubMed ID: 15054074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.