BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15533426)

  • 21. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
    Kwak HS; Kim H; Hyun JM; Song TH
    J Colloid Interface Sci; 2009 Jul; 335(1):123-9. PubMed ID: 19395013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
    Biddiss E; Erickson D; Li D
    Anal Chem; 2004 Jun; 76(11):3208-13. PubMed ID: 15167803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of SU-8 for electrokinetic microfluidic applications.
    Sikanen T; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Lab Chip; 2005 Aug; 5(8):888-96. PubMed ID: 16027941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Analysis of the Heterogeneity Effect on Electroosmotic Micromixers Based on the Standard Deviation of Concentration and Mixing Entropy Index.
    Farahinia A; Jamaati J; Niazmand H; Zhang W
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroosmotic flow through a microparallel channel with 3D wall roughness.
    Chang L; Jian Y; Buren M; Sun Y
    Electrophoresis; 2016 Feb; 37(3):482-92. PubMed ID: 26333852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow.
    Zhang F; Daghighi Y; Li D
    J Colloid Interface Sci; 2011 Dec; 364(2):588-93. PubMed ID: 21930279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic double-layer interaction between spherical particles inside a rough capillary.
    Das PK; Bhattacharjee S
    J Colloid Interface Sci; 2004 May; 273(1):278-90. PubMed ID: 15051462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions.
    Hsu JP; Kao CY; Tseng S; Chen CJ
    J Colloid Interface Sci; 2002 Apr; 248(1):176-84. PubMed ID: 16290520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow.
    Johnson TJ; Locascio LE
    Lab Chip; 2002 Aug; 2(3):135-40. PubMed ID: 15100823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroosmotic flow mixing in zigzag microchannels.
    Chen JK; Yang RJ
    Electrophoresis; 2007 Mar; 28(6):975-83. PubMed ID: 17300132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: requirements of flow rate and current continuities.
    Yang J; Masliyah JH; Kwok DY
    Langmuir; 2004 May; 20(10):3863-71. PubMed ID: 15969372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroosmotic flow in a capillary annulus with high zeta potentials.
    Kang Y; Yang C; Huang X
    J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Zholkovskij EK; Masliyah JH
    Anal Chem; 2004 May; 76(10):2708-18. PubMed ID: 15144179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.