These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Electrokinetic transport in nanochannels. 2. Experiments. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574 [TBL] [Abstract][Full Text] [Related]
67. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Kim D; Darve E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924 [TBL] [Abstract][Full Text] [Related]
68. Electroosmotic shear flow in microchannels. Mampallil D; van den Ende D J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595 [TBL] [Abstract][Full Text] [Related]
69. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Chen Y; Zhang C; Shi M; Peterson GP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026301. PubMed ID: 19792243 [TBL] [Abstract][Full Text] [Related]
70. Scaling of electrokinetic transport in nanometer channels. Qiao R; Aluru NR Langmuir; 2005 Sep; 21(19):8972-7. PubMed ID: 16142986 [TBL] [Abstract][Full Text] [Related]
71. Electrokinetic instability in microchannel ferrofluid/water co-flows. Song L; Yu L; Zhou Y; Antao AR; Prabhakaran RA; Xuan X Sci Rep; 2017 Apr; 7():46510. PubMed ID: 28406228 [TBL] [Abstract][Full Text] [Related]
72. Electroosmotic Mixing of Non-Newtonian Fluid in a Microchannel with Obstacles and Zeta Potential Heterogeneity. Mei L; Cui D; Shen J; Dutta D; Brown W; Zhang L; Dabipi IK Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919798 [TBL] [Abstract][Full Text] [Related]
73. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843 [TBL] [Abstract][Full Text] [Related]
74. Effect of hydration of polyamide membranes on the surface electrokinetic parameters: surface characterization by x-ray photoelectronic spectroscopy and atomic force microscopy. Ariza MJ; Benavente J; Rodríguez-Castellón E; Palacio L J Colloid Interface Sci; 2002 Mar; 247(1):149-58. PubMed ID: 16290450 [TBL] [Abstract][Full Text] [Related]
75. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511 [TBL] [Abstract][Full Text] [Related]
76. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels. Park HM; Kim TW Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604 [TBL] [Abstract][Full Text] [Related]
77. Electroosmotic pumping in microchips with nonhomogeneous distribution of electrolytes. Chien RL; Bousse L Electrophoresis; 2002 Jun; 23(12):1862-9. PubMed ID: 12116129 [TBL] [Abstract][Full Text] [Related]
78. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714 [TBL] [Abstract][Full Text] [Related]
79. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Conlisk AT Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301 [TBL] [Abstract][Full Text] [Related]
80. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Ng WY; Goh S; Lam YC; Yang C; Rodríguez I Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]