BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15533927)

  • 1. Correlation of the O-intermediate rate with the pKa of Asp-75 in the dark, the counterion of the Schiff base of Pharaonis phoborhodopsin (sensory rhodopsin II).
    Iwamoto M; Sudo Y; Shimono K; Araiso T; Kamo N
    Biophys J; 2005 Feb; 88(2):1215-23. PubMed ID: 15533927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin.
    Sudo Y; Furutani Y; Iwamoto M; Kamo N; Kandori H
    Biochemistry; 2008 Mar; 47(9):2866-74. PubMed ID: 18247579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan 171 in Pharaonis phoborhodopsin (sensory rhodopsin II) interacts with the chromophore retinal and its substitution with alanine or threonine slowed down the decay of M- and O-intermediate.
    Iwasa T; Abe E; Yakura Y; Yoshida H; Kamo N
    Photochem Photobiol; 2007; 83(2):328-35. PubMed ID: 17029563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lifetimes of Pharaonis phoborhodopsin signaling states depend on the rates of proton transfers--effects of hydrostatic pressure and stopped flow experiments.
    Kikukawa T; Saha CK; Balashov SP; Imasheva ES; Zaslavsky D; Gennis RB; Abe T; Kamo N
    Photochem Photobiol; 2008; 84(4):880-8. PubMed ID: 18346087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis.
    Tateishi Y; Abe T; Tamogami J; Nakao Y; Kikukawa T; Kamo N; Unno M
    Biochemistry; 2011 Mar; 50(12):2135-43. PubMed ID: 21299224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-reagent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II).
    Yoshida H; Sudo Y; Shimono K; Iwamoto M; Kamo N
    Photochem Photobiol Sci; 2004 Jun; 3(6):537-42. PubMed ID: 15170482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II).
    Iwamoto M; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Mar; 42(10):2790-6. PubMed ID: 12627944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The M intermediate of Pharaonis phoborhodopsin is photoactive.
    Balashov SP; Sumi M; Kamo N
    Biophys J; 2000 Jun; 78(6):3150-9. PubMed ID: 10827991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of charged residues of pharaonis phoborhodopsin (sensory rhodopsin II) in its interaction with the transducer protein.
    Sudo Y; Iwamoto M; Shimono K; Kamo N
    Biochemistry; 2004 Nov; 43(43):13748-54. PubMed ID: 15504037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli.
    Iwamoto M; Shimono K; Sumi M; Kamo N
    Biophys Chem; 1999 Jun; 79(3):187-92. PubMed ID: 10443011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long-lived M-like state of phoborhodopsin that mimics the active state.
    Sudo Y; Nishihori T; Iwamoto M; Shimono K; Kojima C; Kamo N
    Biophys J; 2008 Jul; 95(2):753-60. PubMed ID: 18375514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin.
    Iwamoto M; Sudo Y; Shimono K; Kamo N
    Biochim Biophys Acta; 2001 Sep; 1514(1):152-8. PubMed ID: 11513812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids.
    Iwamoto M; Hasegawa C; Sudo Y; Shimono K; Araiso T; Kamo N
    Biochemistry; 2004 Mar; 43(11):3195-203. PubMed ID: 15023069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Arg-72 of pharaonis Phoborhodopsin (sensory rhodopsin II) on its photochemistry.
    Ikeura Y; Shimono K; Iwamoto M; Sudo Y; Kamo N
    Biophys J; 2004 May; 86(5):3112-20. PubMed ID: 15111424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin.
    Furutani Y; Iwamoto M; Shimono K; Kamo N; Kandori H
    Biophys J; 2002 Dec; 83(6):3482-9. PubMed ID: 12496114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding alteration of Thr-204 in the complex between pharaonis phoborhodopsin and its transducer protein.
    Sudo Y; Furutani Y; Shimono K; Kamo N; Kandori H
    Biochemistry; 2003 Dec; 42(48):14166-72. PubMed ID: 14640684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-optical switching in Pharaonis phoborhodopsin protein molecules.
    Roy S; Kikukawa T; Sharma P; Kamo N
    IEEE Trans Nanobioscience; 2006 Sep; 5(3):178-87. PubMed ID: 16999243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin.
    Shimono K; Furutani Y; Kandori H; Kamo N
    Biochemistry; 2002 May; 41(20):6504-9. PubMed ID: 12009914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illumination accelerates the decay of the O-intermediate of pharaonis phoborhodopsin (sensory rhodopsin II).
    Iwamoto M; Sudo Y; Shimono K; Kamo N
    Photochem Photobiol; 2002 Oct; 76(4):462-6. PubMed ID: 12405157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational modes of the protonated Schiff base in pharaonis phoborhodopsin.
    Shimono K; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Jul; 42(25):7801-6. PubMed ID: 12820889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.