BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15534431)

  • 1. Energy expenditure in chronic spinal cord injury.
    Buchholz AC; Pencharz PB
    Curr Opin Clin Nutr Metab Care; 2004 Nov; 7(6):635-9. PubMed ID: 15534431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects.
    Monroe MB; Tataranni PA; Pratley R; Manore MM; Skinner JS; Ravussin E
    Am J Clin Nutr; 1998 Dec; 68(6):1223-7. PubMed ID: 9846850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caloric Intake Relative to Total Daily Energy Expenditure Using a Spinal Cord Injury-Specific Correction Factor: An Analysis by Level of Injury.
    Farkas GJ; Gorgey AS; Dolbow DR; Berg AS; Gater DR
    Am J Phys Med Rehabil; 2019 Nov; 98(11):947-952. PubMed ID: 30817378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure after spinal cord injury in people with motor-complete tetraplegia or motor-complete paraplegia.
    Holmlund T; Ekblom-Bak E; Franzén E; Hultling C; Wahman K
    Spinal Cord; 2018 Mar; 56(3):274-283. PubMed ID: 29238094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily energy expenditure and basal metabolic rates of patients with spinal cord injury.
    Mollinger LA; Spurr GB; el Ghatit AZ; Barboriak JJ; Rooney CB; Davidoff DD; Bongard RD
    Arch Phys Med Rehabil; 1985 Jul; 66(7):420-6. PubMed ID: 4015352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the Basal metabolic rate from fat free mass in individuals with motor complete spinal cord injury.
    Chun SM; Kim HR; Shin HI
    Spinal Cord; 2017 Sep; 55(9):844-847. PubMed ID: 28534498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy expenditure and metabolism during exercise in persons with a spinal cord injury.
    Price M
    Sports Med; 2010 Aug; 40(8):681-96. PubMed ID: 20632738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy balance components in persons with paraplegia: daily variation and appropriate measurement duration.
    Nightingale TE; Williams S; Thompson D; Bilzon JLJ
    Int J Behav Nutr Phys Act; 2017 Sep; 14(1):132. PubMed ID: 28950900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meal-induced rise in resting energy expenditure in patients with complete cervical spinal cord lesions.
    Aksnes AK; Brundin T; Hjeltnes N; Maehlum S; Wahren J
    Paraplegia; 1993 Jul; 31(7):462-72. PubMed ID: 8371937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability in energy expenditure and its components.
    Donahoo WT; Levine JA; Melanson EL
    Curr Opin Clin Nutr Metab Care; 2004 Nov; 7(6):599-605. PubMed ID: 15534426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical activity levels are low in free-living adults with chronic paraplegia.
    Buchholz AC; McGillivray CF; Pencharz PB
    Obes Res; 2003 Apr; 11(4):563-70. PubMed ID: 12690086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Cost of Lower Body Dressing, Pop-Over Transfers, and Manual Wheelchair Propulsion in People with Paraplegia Due to Motor-Complete Spinal Cord Injury.
    Lynch MM; McCormick Z; Liem B; Jacobs G; Hwang P; Hornby TG; Rydberg L; Roth EJ
    Top Spinal Cord Inj Rehabil; 2015; 21(2):140-8. PubMed ID: 26364283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study.
    Spungen AM; Adkins RH; Stewart CA; Wang J; Pierson RN; Waters RL; Bauman WA
    J Appl Physiol (1985); 2003 Dec; 95(6):2398-407. PubMed ID: 12909613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Review of the Accuracy of Estimated and Measured Resting Metabolic Rate in Chronic Spinal Cord Injury.
    Farkas GJ; Pitot MA; Gater Jr. DR
    Int J Sport Nutr Exerc Metab; 2019 Sep; 29(5):548-558. PubMed ID: 31034249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of two Generic Prediction Equations and One Population-Specific Equation for Resting Energy Expenditure in Individuals with Spinal Cord Injury.
    Andersen RE; Sweet SN; Reid RER; Sydney F; Plourde H
    Can J Diet Pract Res; 2018 Nov; 79(4):164-169. PubMed ID: 30014708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy expenditure and aging: effects of physical activity.
    Starling RD
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S208-17. PubMed ID: 11915922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcopenic Obesity in Adults With Spinal Cord Injury: A Cross-Sectional Study.
    Pelletier CA; Miyatani M; Giangregorio L; Craven BC
    Arch Phys Med Rehabil; 2016 Nov; 97(11):1931-1937. PubMed ID: 27282328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Thermic Effect of Food: A Review.
    Calcagno M; Kahleova H; Alwarith J; Burgess NN; Flores RA; Busta ML; Barnard ND
    J Am Coll Nutr; 2019 Aug; 38(6):547-551. PubMed ID: 31021710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Expenditure Following Spinal Cord Injury: A Delicate Balance.
    Farkas GJ; Sneij A; Gater DR
    Top Spinal Cord Inj Rehabil; 2021; 27(1):92-99. PubMed ID: 33814887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Expenditure as a Function of Activity Level After Spinal Cord Injury: The Need for Tetraplegia-Specific Energy Balance Guidelines.
    Shea JR; Shay BL; Leiter J; Cowley KC
    Front Physiol; 2018; 9():1286. PubMed ID: 30283348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.