These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15535000)

  • 21. Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames.
    Karpetis AN; Settersten TB; Schefer RW; Barlow RS
    Opt Lett; 2004 Feb; 29(4):355-7. PubMed ID: 14971751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging.
    Kulatilaka WD; Stauffer HU; Gord JR; Roy S
    Opt Lett; 2011 Nov; 36(21):4182-4. PubMed ID: 22048358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.
    Bohlin A; Kliewer CJ
    J Chem Phys; 2013 Jun; 138(22):221101. PubMed ID: 23781772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Raman Spectroscopy when the Signal-to-Noise is Below the Limit of Quantitation due to Fluorescence Interference: Advantages of a Moving Window Sequentially Shifted Excitation Approach.
    Marshall S; Cooper JB
    Appl Spectrosc; 2016 Sep; 70(9):1489-501. PubMed ID: 27613308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman scattering measurements in flames using a tunable KrF excimer laser.
    Wehrmeyer JA; Cheng TS; Pitz RW
    Appl Opt; 1992 Apr; 31(10):1495-504. PubMed ID: 20720783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.
    Blotevogel T; Hartmann M; Rottengruber H; Leipertz A
    Appl Opt; 2008 Dec; 47(35):6488-96. PubMed ID: 19079454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives.
    Zachhuber B; Ramer G; Hobro A; Chrysostom ET; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2439-47. PubMed ID: 21336938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Note: deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application.
    Jin S; Fan F; Guo M; Zhang Y; Feng Z; Li C
    Rev Sci Instrum; 2014 Apr; 85(4):046105. PubMed ID: 24784683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ocean-color model incorporating transspectral processes.
    Sathyendranath S; Platt T
    Appl Opt; 1998 Apr; 37(12):2216-27. PubMed ID: 18273144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations.
    Whiteman DN
    Appl Opt; 2003 May; 42(15):2571-92. PubMed ID: 12776994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-Dimensional, Time-Resolved Raman Measurements in a Sooting Flame made with 355-nm Excitation.
    Rabenstein F; Leipertz A
    Appl Opt; 1998 Jul; 37(21):4937-43. PubMed ID: 18285963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulated Raman scattering of intense laser pulses in air.
    Peñano JR; Sprangle P; Serafim P; Hafizi B; Ting A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056502. PubMed ID: 14682899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomic vapor filter for two-dimensional Rayleigh imaging experiments with a narrow-band KrF excimer laser.
    Gölz P; Andresen P
    Appl Opt; 1996 Oct; 35(30):6054-61. PubMed ID: 21127620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.
    Yue O; Bremer MT; Pestov D; Gord JR; Roy S; Dantus M
    J Phys Chem A; 2012 Aug; 116(31):8138-41. PubMed ID: 22747235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser crater enhanced Raman spectroscopy.
    Lednev VN; Sdvizhenskii PA; Grishin MY; Filippov MN; Shchegolikhin AN; Pershin SM
    Opt Lett; 2017 Feb; 42(3):607-610. PubMed ID: 28146539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-cavity Nd:YAG laser used in single-shot spontaneous Raman scattering measurements.
    Cléon G; Stepowski D; Cessou A
    Opt Lett; 2007 Nov; 32(22):3290-2. PubMed ID: 18026283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FLEET velocimetry for combustion and flow diagnostics.
    DeLuca NJ; Miles RB; Jiang N; Kulatilaka WD; Patnaik AK; Gord JR
    Appl Opt; 2017 Nov; 56(31):8632-8638. PubMed ID: 29091674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compressive coherent anti-Stokes Raman scattering holography.
    Cocking A; Mehta N; Shi K; Liu Z
    Opt Express; 2015 Sep; 23(19):24991-6. PubMed ID: 26406699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams.
    Kliewer CJ
    Opt Lett; 2012 Jan; 37(2):229-31. PubMed ID: 22854476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman imaging with a fiber-coupled multichannel spectrograph.
    Schmälzlin E; Moralejo B; Rutowska M; Monreal-Ibero A; Sandin C; Tarcea N; Popp J; Roth MM
    Sensors (Basel); 2014 Nov; 14(11):21968-80. PubMed ID: 25420149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.