These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15535132)

  • 1. Brainstem and basal ganglia lesions in xeroderma pigmentosum group A.
    Hayashi M; Araki S; Kohyama J; Shioda K; Fukatsu R; Tamagawa K
    J Neuropathol Exp Neurol; 2004 Oct; 63(10):1048-57. PubMed ID: 15535132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuropathological evaluation of the diencephalon, basal ganglia and upper brainstem in alobar holoprosencephaly.
    Hayashi M; Araki S; Kumada S; Itoh M; Morimatsu Y; Matsuyama H
    Acta Neuropathol; 2004 Mar; 107(3):190-6. PubMed ID: 14685895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-binding proteins in primate basal ganglia.
    Parent A; Fortin M; Côté PY; Cicchetti F
    Neurosci Res; 1996 Aug; 25(4):309-34. PubMed ID: 8866512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome.
    Hayashi M; Araki S; Kohyama J; Shioda K; Fukatsu R
    Brain Dev; 2005 Jan; 27(1):34-8. PubMed ID: 15626539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32.
    Morel A; Loup F; Magnin M; Jeanmonod D
    J Comp Neurol; 2002 Jan; 443(1):86-103. PubMed ID: 11793349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of calbindin D-28k and parvalbumin neurons and fibers in the rat basal ganglia.
    Hontanilla B; Parent A; de las Heras S; Giménez-Amaya JM
    Brain Res Bull; 1998 Sep; 47(2):107-16. PubMed ID: 9820727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-binding protein immunoreactivity delineates the intralaminar nuclei of the thalamus in the human brain.
    Münkle MC; Waldvogel HJ; Faull RL
    Neuroscience; 1999 May; 90(2):485-91. PubMed ID: 10215153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilirubin encephalopathy: a study of neuronal subpopulations and neurodegenerative mechanisms in 12 autopsy cases.
    Hachiya Y; Hayashi M
    Brain Dev; 2008 Apr; 30(4):269-78. PubMed ID: 17937977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat.
    Spencer RF; Shaia WT; Gleason AT; Sismanis A; Shapiro SM
    Hear Res; 2002 Sep; 171(1-2):129-141. PubMed ID: 12204357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons.
    Corns RA; Boolaky UV; Santer RM
    Neurosci Lett; 2000 Oct; 292(2):91-4. PubMed ID: 10998556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem.
    Caicedo A; d'Aldin C; Eybalin M; Puel JL
    J Comp Neurol; 1997 Feb; 378(1):1-15. PubMed ID: 9120049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus.
    Arai R; Jacobowitz DM; Deura S
    Brain Res Bull; 1994; 33(5):595-614. PubMed ID: 8187003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical analysis of brainstem lesions in infantile spasms.
    Hayashi M; Itoh M; Araki S; Kumada S; Tanuma N; Kohji T; Kohyama J; Iwakawa Y; Satoh J; Morimatsu Y
    Neuropathology; 2000 Dec; 20(4):297-303. PubMed ID: 11211054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropathological analysis of the brainstem and cerebral cortex lesions on epileptogenesis in hereditary dentatorubral-pallidoluysian atrophy.
    Hayashi M; Kumada S; Shioda K; Fukatsu R
    Brain Dev; 2007 Sep; 29(8):473-81. PubMed ID: 17307319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase.
    Rogers JH
    Brain Res; 1992 Aug; 587(2):203-10. PubMed ID: 1356063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced expression of neuropeptides can be related to respiratory disturbances in Rett syndrome.
    Saito Y; Ito M; Ozawa Y; Matsuishi T; Hamano K; Takashima S
    Brain Dev; 2001 Dec; 23 Suppl 1():S122-6. PubMed ID: 11738857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calretinin, calbindin-D28k and parvalbumin-like immunoreactivity in mouse chemoreceptor neurons.
    Kishimoto J; Keverne EB; Emson PC
    Brain Res; 1993 May; 610(2):325-9. PubMed ID: 8319093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of alkaline phosphatase in situ hybridization with immunohistochemistry: colocalization of calretinin-mRNA with calbindin and tyrosine hydroxylase immunoreactivity in rat substantia nigra neurons.
    Heppelmann B; Señaris R; Emson PC
    Brain Res; 1994 Jan; 635(1-2):293-9. PubMed ID: 7909717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of calcium-binding proteins in the mouse claustrum.
    Real MA; Dávila JC; Guirado S
    J Chem Neuroanat; 2003 Mar; 25(3):151-60. PubMed ID: 12706203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans.
    McRitchie DA; Hardman CD; Halliday GM
    J Comp Neurol; 1996 Jan; 364(1):121-50. PubMed ID: 8789281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.