These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15535195)

  • 21. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms.
    Hsiu H; Hsu CL; Wu TL
    Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of probe contact pressure on the photoplethysmographic assessment of conduit artery stiffness.
    Grabovskis A; Marcinkevics Z; Rubins U; Kviesis-Kipge E
    J Biomed Opt; 2013 Feb; 18(2):27004. PubMed ID: 23377011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes).
    Yuan H; Poeggel S; Newe T; Lewis E; Viphavakit C; Leen G
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoplethysmographic Waveform in Hyperbaric Environment.
    Pelaez Coca MD; Hernando A; Sanchez C; Albalate MTL; Izquierdo D; Gil E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3490-3493. PubMed ID: 31946630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement.
    Foo JY; Wilson SJ; Williams GR; Harris M; Cooper DM
    Australas Phys Eng Sci Med; 2004 Dec; 27(4):165-73. PubMed ID: 15712583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Optical Crosstalk on Accuracy of Reflectance-Type Pulse Oximeter for Mobile Healthcare.
    Baek HJ; Shin J; Cho J
    J Healthc Eng; 2018; 2018():3521738. PubMed ID: 30420912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site.
    Hartmann V; Liu H; Chen F; Qiu Q; Hughes S; Zheng D
    Front Physiol; 2019; 10():198. PubMed ID: 30890959
    [No Abstract]   [Full Text] [Related]  

  • 28. Assessment of photoplethysmographic signals for the determination of splanchnic oxygen saturation in humans.
    Crerar-Gilbert AJ; Kyriacou PA; Jones DP; Langford RM
    Anaesthesia; 2002 May; 57(5):442-5. PubMed ID: 11966553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A system for investigating oesophageal photoplethysmographic signals in anaesthetised patients.
    Kyriacou PA; Moye AR; Gregg A; Choi DM; Langford RM; Jones DP
    Med Biol Eng Comput; 1999 Sep; 37(5):639-43. PubMed ID: 10723903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Biomed Opt; 2010; 15(2):027012. PubMed ID: 20459286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Usefulness of Pulse Amplitude Changes During the Valsalva Maneuver Measured Using Finger Photoplethysmography to Identify Elevated Pulmonary Capillary Wedge Pressure in Patients With Heart Failure.
    Gilotra NA; Tedford RJ; Wittstein IS; Yenokyan G; Sharma K; Russell SD; Silber HA
    Am J Cardiol; 2017 Sep; 120(6):966-972. PubMed ID: 28754567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The variability of the photoplethysmographic signal--a potential method for the evaluation of the autonomic nervous system.
    Nitzan M; Babchenko A; Khanokh B; Landau D
    Physiol Meas; 1998 Feb; 19(1):93-102. PubMed ID: 9522390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal.
    Khanokh B; Slovik Y; Landau D; Nitzan M
    Med Biol Eng Comput; 2004 Jan; 42(1):80-5. PubMed ID: 14977226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Light Conditions on Photoplethysmographic Image Acquisition Using a Commercial Camera.
    Liu H; Wang Y; Wang L
    IEEE J Transl Eng Health Med; 2014; 2():1800811. PubMed ID: 27170870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of respiratory-induced variations in photoplethysmographic signals.
    Li J; Jin J; Chen X; Sun W; Guo P
    Physiol Meas; 2010 Mar; 31(3):415-25. PubMed ID: 20147775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relations between ac-dc components and optical path length in photoplethysmography.
    Lee C; Sik Shin H; Lee M
    J Biomed Opt; 2011 Jul; 16(7):077012. PubMed ID: 21806292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of a device to measure arterial pulse wave velocity by a photoplethysmographic method.
    Loukogeorgakis S; Dawson R; Phillips N; Martyn CN; Greenwald SE
    Physiol Meas; 2002 Aug; 23(3):581-96. PubMed ID: 12214765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pulse wave analysis of normal pregnancy: investigating the gestational effects on photoplethysmographic signals.
    Su F; Li Z; Sun X; Han N; Wang L; Luo X
    Biomed Mater Eng; 2014; 24(1):209-19. PubMed ID: 24211900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse wave registration from radial artery using photoplethysmographic method.
    Pilt K; Leier M; Silluta S; Koots K; Meigas K; Viigimaa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6425-8. PubMed ID: 26737763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.