These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15535195)

  • 41. Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected.
    Nilsson L; Goscinski T; Lindenberger M; Länne T; Johansson A
    Physiol Meas; 2010 Jul; 31(7):953-62. PubMed ID: 20530847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calibrated photoplethysmographic estimation of digital pulse volume and arterial compliance.
    Raamat R; Jagomägi K; Talts J
    Clin Physiol Funct Imaging; 2007 Nov; 27(6):354-62. PubMed ID: 17944657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preliminary assessment of abdominal organ perfusion utilizing a fiber optic photoplethysmographic sensor.
    Hickey M; Samuels N; Randive N; Langford R; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1020-3. PubMed ID: 21096995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation.
    Zahedi E; Jaafar R; Ali MA; Mohamed AL; Maskon O
    Physiol Meas; 2008 May; 29(5):625-37. PubMed ID: 18460764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The Study of the Measurement of Heart Rate Variability Using ECG and Photoplethysmographic Signal].
    Wang B; Chai X; Zhang Zhengbo ; Wang W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Jul; 39(4):249-52, 264. PubMed ID: 26665942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in time delay between two models of pulse oximeters for deriving the photoplethysmographic signals.
    Foo JY; Wilson SJ; Dakin C; Williams G; Harris MA; Cooper D
    Physiol Meas; 2005 Aug; 26(4):531-44. PubMed ID: 15886446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Effect of Tracheal Intubation-Induced Autonomic Response on Photoplethysmography.
    Talke P
    Anesthesiol Res Pract; 2017; 2017():7646541. PubMed ID: 28469670
    [No Abstract]   [Full Text] [Related]  

  • 50. Time discrete, near infrared photoplethysmography (NIRP) for non-invasive investigation of the volume pulse in man.
    Christ F; Athelogou M; Niklas M; Baschnegger H; Moser CM; Peter K; Messmer K
    Eur J Med Res; 1996 Feb; 1(5):237-43. PubMed ID: 9374444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frequency domain analysis of photoplethysmographic and arterial pressure waveforms for assessing hemodynamics in children with congenital heart surgery.
    Jang HY; Song IK; Kim SH; Shin WJ
    Korean J Anesthesiol; 2024 Apr; 77(2):205-216. PubMed ID: 38204171
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoplethysmography and nociception.
    Korhonen I; Yli-Hankala A
    Acta Anaesthesiol Scand; 2009 Sep; 53(8):975-85. PubMed ID: 19572939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure.
    Nilsson L; Johansson A; Kalman S
    Med Biol Eng Comput; 2003 May; 41(3):249-54. PubMed ID: 12803288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finger and forehead photoplethysmography-derived pulse-pressure variation and the benefits of baseline correction.
    Sun S; Peeters WH; Bezemer R; Long X; Paulussen I; Aarts RM; Noordergraaf GJ
    J Clin Monit Comput; 2019 Feb; 33(1):65-75. PubMed ID: 29644558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New pulse oximetry detection based on the light absorbance ratio as determined from amplitude modulation indexes in the time and frequency domains.
    Kainan P; Sinchai A; Tuwanut P; Wardkein P
    Biomed Signal Process Control; 2022 May; 75():103627. PubMed ID: 36267662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of intracranial pressure on photoplethysmographic waveform in different cerebral perfusion territories: A computational study.
    Liu H; Pan F; Lei X; Hui J; Gong R; Feng J; Zheng D
    Front Physiol; 2023; 14():1085871. PubMed ID: 37007991
    [No Abstract]   [Full Text] [Related]  

  • 57. Pulse photoplethysmographic amplitude and heart rate variability during laparoscopic cholecystectomy: A prospective observational study.
    Colombo R; Raimondi F; Corona A; Marchi A; Borghi B; Pellegrin S; Bergomi P; Fossali T; Guzzetti S; Porta A
    Eur J Anaesthesiol; 2017 Aug; 34(8):526-533. PubMed ID: 28617680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation.
    Natalini G; Rosano A; Franceschetti ME; Facchetti P; Bernardini A
    Anesth Analg; 2006 Nov; 103(5):1182-8. PubMed ID: 17056952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics of beat-to-beat photoplethysmography waveform indexes in subjects with metabolic syndrome.
    Chang YW; Hsiu H; Yang SH; Fang WH; Tsai HC
    Microvasc Res; 2016 Jul; 106():80-7. PubMed ID: 27067750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduction of Periodic Motion Artifacts in Photoplethysmography.
    Wijshoff RW; Mischi M; Aarts RM
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):196-207. PubMed ID: 27093308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.