These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15535555)

  • 1. Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various reaction mechanisms.
    Stirling A; Iannuzzi M; Laio A; Parrinello M
    Chemphyschem; 2004 Oct; 5(10):1558-68. PubMed ID: 15535555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms.
    Alder RW; East SP; Harvey JN; Oakley MT
    J Am Chem Soc; 2003 May; 125(18):5375-87. PubMed ID: 12720451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring intramolecular reactions in complex systems with metadynamics: the case of the malonate anions.
    Asciutto E; Sagui C
    J Phys Chem A; 2005 Sep; 109(34):7682-7. PubMed ID: 16834142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azulene-Naphthalene, Naphthalene-Naphthalene, and Azulene-Azulene Rearrangements.
    Mirzaei MS; Taherpour AA; Wentrup C
    J Org Chem; 2022 Sep; 87(17):11503-11518. PubMed ID: 35960863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Car-Parrinello molecular dynamics study of the rearrangement of the valeramide radical cation.
    Semialjac M; Schröder D; Schwarz H
    Chemistry; 2003 Sep; 9(18):4396-404. PubMed ID: 14502626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the rehydroxylation reaction of pyrophyllite by ab initio molecular dynamics.
    Molina-Montes E; Donadio D; Hernández-Laguna A; Sainz-Díaz CI
    J Phys Chem B; 2010 Jun; 114(22):7593-601. PubMed ID: 20469939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metadynamics as a tool for exploring free energy landscapes of chemical reactions.
    Ensing B; De Vivo M; Liu Z; Moore P; Klein ML
    Acc Chem Res; 2006 Feb; 39(2):73-81. PubMed ID: 16489726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can the C(5)H(5) + C(5)H(5) --> C(10)H(10) --> C(10)H(9) + H/C(10)H(8) + H(2) reaction produce naphthalene? An Ab initio/RRKM study.
    Mebel AM; Kislov VV
    J Phys Chem A; 2009 Sep; 113(36):9825-33. PubMed ID: 19681629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration structure of Y3+ and La3+ compared: an application of metadynamics.
    Ikeda T; Hirata M; Kimura T
    J Chem Phys; 2005 Jun; 122(24):244507. PubMed ID: 16035782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Rearrangement of Azulenes to Naphthalenes: A Deeper Insight into the Mechanisms.
    Mirzaei MS; Taherpour AA; Wentrup C
    J Org Chem; 2022 Mar; 87(5):3296-3310. PubMed ID: 35157471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics-driven reaction pathway in an intramolecular rearrangement.
    Ammal SC; Yamataka H; Aida M; Dupuis M
    Science; 2003 Mar; 299(5612):1555-7. PubMed ID: 12624261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection.
    Casavecchia P; Leonori F; Balucani N; Petrucci R; Capozza G; Segoloni E
    Phys Chem Chem Phys; 2009 Jan; 11(1):46-65. PubMed ID: 19081908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT research on the dehydroxylation reaction of pyrophyllite 2. Characterization of reactants, intermediates, and transition states along the reaction path.
    Molina-Montes E; Donadio D; Hernández-Laguna A; Sainz-Díaz CI
    J Phys Chem A; 2008 Jul; 112(28):6373-83. PubMed ID: 18563890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical study of low temperature oxidation mechanism of dibenzofuran.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2006 Dec; 110(50):13560-7. PubMed ID: 17165883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio exploration of rearrangement reactions: intramolecular hydrogen scrambling processes in acetone.
    Cucinotta CS; Ruini A; Catellani A; Stirling A
    J Phys Chem A; 2006 Dec; 110(51):14013-7. PubMed ID: 17181363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rearrangement of Dewar benzene derivatives studied by DFT.
    Dracínský M; Castaño O; Kotora M; Bour P
    J Org Chem; 2010 Feb; 75(3):576-81. PubMed ID: 20073484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of methylbenzyl radicals in the pyrolysis and oxidation of xylenes.
    da Silva G; Moore EE; Bozzelli JW
    J Phys Chem A; 2009 Sep; 113(38):10264-78. PubMed ID: 19757847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ab initio G3-type/statistical theory study of the formation of indene in combustion flames. II. The pathways originating from reactions of cyclic C5 species-cyclopentadiene and cyclopentadienyl radicals.
    Kislov VV; Mebel AM
    J Phys Chem A; 2008 Jan; 112(4):700-16. PubMed ID: 18181589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.