These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 15535861)

  • 1. Transcriptome analysis of haploid male gametophyte development in Arabidopsis.
    Honys D; Twell D
    Genome Biol; 2004; 5(11):R85. PubMed ID: 15535861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa.
    Wei LQ; Xu WY; Deng ZY; Su Z; Xue Y; Wang T
    BMC Genomics; 2010 May; 11():338. PubMed ID: 20507633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis.
    Hafidh S; Breznenová K; Růžička P; Feciková J; Capková V; Honys D
    BMC Plant Biol; 2012 Feb; 12():24. PubMed ID: 22340370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial interactions between LBD10 and LBD27 are essential for male gametophyte development in Arabidopsis.
    Kim MJ; Kim M; Kim J
    Plant Signal Behav; 2015; 10(8):e1044193. PubMed ID: 26252070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana.
    Xia C; Wang YJ; Liang Y; Niu QK; Tan XY; Chu LC; Chen LQ; Zhang XQ; Ye D
    Plant J; 2014 Sep; 79(5):741-56. PubMed ID: 24923357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling.
    Yu HJ; Hogan P; Sundaresan V
    Plant Physiol; 2005 Dec; 139(4):1853-69. PubMed ID: 16299181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating membrane transport with male gametophyte development and function through transcriptomics.
    Bock KW; Honys D; Ward JM; Padmanaban S; Nawrocki EP; Hirschi KD; Twell D; Sze H
    Plant Physiol; 2006 Apr; 140(4):1151-68. PubMed ID: 16607029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LATERAL ORGAN BOUNDARIES DOMAIN (LBD)10 interacts with SIDECAR POLLEN/LBD27 to control pollen development in Arabidopsis.
    Kim MJ; Kim M; Lee MR; Park SK; Kim J
    Plant J; 2015 Mar; 81(5):794-809. PubMed ID: 25611322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis hapless mutations define essential gametophytic functions.
    Johnson MA; von Besser K; Zhou Q; Smith E; Aux G; Patton D; Levin JZ; Preuss D
    Genetics; 2004 Oct; 168(2):971-82. PubMed ID: 15514068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation.
    Pina C; Pinto F; Feijó JA; Becker JD
    Plant Physiol; 2005 Jun; 138(2):744-56. PubMed ID: 15908605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice.
    Deveshwar P; Bovill WD; Sharma R; Able JA; Kapoor S
    BMC Plant Biol; 2011 May; 11():78. PubMed ID: 21554676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtNOT1 Is a Novel Regulator of Gene Expression during Pollen Development.
    Motomura K; Arae T; Araki-Uramoto H; Suzuki Y; Takeuchi H; Suzuki T; Ichihashi Y; Shibata A; Shirasu K; Takeda A; Higashiyama T; Chiba Y
    Plant Cell Physiol; 2020 Apr; 61(4):712-721. PubMed ID: 31879778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic expression profiling of mature soybean (Glycine max) pollen.
    Haerizadeh F; Wong CE; Bhalla PL; Gresshoff PM; Singh MB
    BMC Plant Biol; 2009 Mar; 9():25. PubMed ID: 19265555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis.
    Oh SA; Hoai TNT; Park HJ; Zhao M; Twell D; Honys D; Park SK
    Plant J; 2020 Feb; 101(3):590-603. PubMed ID: 31610057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen.
    Gibalová A; Renák D; Matczuk K; Dupl'áková N; Cháb D; Twell D; Honys D
    Plant Mol Biol; 2009 Jul; 70(5):581-601. PubMed ID: 19449183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte.
    Hoffmann RD; Palmgren MG
    Mol Plant; 2013 Jul; 6(4):1176-86. PubMed ID: 23770838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes expressed in the Arabidopsis female gametophyte.
    Steffen JG; Kang IH; Macfarlane J; Drews GN
    Plant J; 2007 Jul; 51(2):281-92. PubMed ID: 17559508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein.
    Reňák D; Gibalová A; Solcová K; Honys D
    Plant Cell Environ; 2014 Mar; 37(3):670-83. PubMed ID: 23961845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.
    Jiang Y; Deyholos MK
    BMC Plant Biol; 2006 Oct; 6():25. PubMed ID: 17038189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.